Lecture 21:

Wednesday, November 20, 2002

1

Outline

• Query execution: 15.1 – 15.5

2

One-pass Algorithms

Hash join: R ⋈ S

• Scan S, build buckets in main memory

• Then scan R and join

• Cost: B(R) + B(S)

• Assumption: $B(S) \le M$

3

One-pass Algorithms

Duplicate elimination $\delta(R)$

- Need to keep tuples in memory
- When new tuple arrives, need to compare it with previously seen tuples
- Balanced search tree, or hash table
- Cost: B(R)
- Assumption: $B(\delta(R)) \le M$

4

Question in Class

Grouping:

Product(name, department, quantity)

 $\begin{array}{c} \gamma_{department,\;sum(quantity)} \; (Product) \; \Rightarrow \\ \; Answer(department,\;sum) \end{array}$

Question: how do you compute it in main

memory?

Answer:

One-pass Algorithms

Grouping: $\gamma_{a, sum(b)}(R)$

- Need to store all a's in memory
- Also store the sum(b) for each a
- Balanced search tree or hash table
- Cost: B(R)
- Assumption: number of cities fits in memory

One-pass Algorithms

Binary operations: $R \cap S$, $R \cup S$, R - S

- Assumption: $min(B(R), B(S)) \le M$
- Scan one table first, then the next, eliminate duplicates
- Cost: B(R)+B(S)

Question in Class

Fill in missing lines to $compute \; R \, \cup \, S$ H ← emptyHashTable /* scan R */ For each x in R do insert(H,

/* scan S */ For each y in S do

/* collect result */ for each z in H do

Question in Class

Fill in missing lines to compute R - S H ← emptyHashTable /* scan R */ For each x in R do insert(H, /* scan S */

For each y in S do

/* collect result */ for each z in H do

Question in Class

Fill in missing lines to $compute \ R \cap S$ H ← emptyHashTable /* scan R */ For each x in R do insert(H,

/* scan S */ For each y in S do

/* collect result */ for each z in H do

Nested Loop Joins

• Tuple-based nested loop $R \bowtie S$

for each tuple r in R do for each tuple s in S do if r and s join then output (r,s)

• Cost: T(R) T(S), sometimes T(R) B(S)

11

Nested Loop Joins

- We can be much more clever
- Question: how would you compute the join in the following cases? What is the cost?
 - B(R) = 1000, B(S) = 2, M = 4
- B(R) = 1000, B(S) = 4, M = 4
- B(R) = 1000, B(S) = 6, M = 4

Nested Loop Joins

· Block-based Nested Loop Join

for each (M-1) blocks bs of S do for each block br of R do for each tuple s in bs for each tuple r in br do if r and s join then output(r,s)

17

Nested Loop Joins

- · Block-based Nested Loop Join
- Cost:
 - Read S once: cost B(S)
 - Outer loop runs B(S)/(M-1) times, and each time need to read R: costs B(S)B(R)/(M-1)
 - Total cost: B(S) + B(S)B(R)/(M-1)
- · Notice: it is better to iterate over the smaller relation first
- $R \bowtie S$: R=outer relation, S=inner relation

Two-Pass Algorithms Based on Sorting

- · Recall: multi-way merge sort needs only two passes!
- Assumption: $B(R) \le M^2$ • Cost for sorting: 3B(R)

Two-Pass Algorithms Based on Sorting

Duplicate elimination $\delta(R)$

- · Trivial idea: sort first, then eliminate duplicates
- Step 1: sort chunks of size M, write
 - cost 2B(R)
- Step 2: merge M-1 runs, but include each tuple only once
 - cost B(R)
- Total cost: 3B(R), Assumption: B(R) <= M²

Sorting

Two-Pass Algorithms Based on

Grouping: $\gamma_{a, sum(b)}(R)$

- Same as before: sort, then compute the sum(b) for each group of a's
- Total cost: 3B(R)
- Assumption: $B(R) \le M^2$

Two-Pass Algorithms Based on Sorting

Binary operations: $R \cup S$, $R \cap S$, R - S

- Idea: sort R, sort S, then do the right thing
- · A closer look:
 - Step 1: split R into runs of size M, then split S into runs of size M. Cost: 2B(R) + 2B(S)
 - Step 2: merge M/2 runs from R; merge M/2 runs from S; ouput a tuple on a case by cases basis
- Total cost: 3B(R)+3B(S)
- Assumption: $B(R)+B(S) \le M^2$

10

Two-Pass Algorithms Based on Sorting

Join $R \bowtie S$

- Start by sorting both R and S on the join attribute:
 - Cost: 4B(R)+4B(S) (because need to write to disk)
- Read both relations in sorted order, match tuples
 Cost: B(R)+B(S)
- Difficulty: many tuples in R may match many in S
 - If at least one set of tuples fits in M, we are OK
 - Otherwise need nested loop, higher cost
- Total cost: 5B(R)+5B(S)
- Assumption: $B(R) \le M^2$, $B(S) \le M^2$

20

Two-Pass Algorithms Based on Sorting

Join $R \bowtie S$

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3B(R)+3B(S)
- Assumption: $B(R) + B(S) \le M^2$

21

Two Pass Algorithms Based on Hashing

- · Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M

- Does each bucket fit in main memory?
 - Yes if $B(R)/M \le M$, i.e. $B(R) \le M^2$

22

Hash Based Algorithms for δ

- Recall: $\delta(R)$ = duplicate elimination
- Step 1. Partition R into buckets
- Step 2. Apply δ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption:B(R) \leq = M²

23

Hash Based Algorithms for γ

- Recall: $\gamma(R)$ = grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption:B(R) \leq M²

Partitioned Hash Join

$R \bowtie S$

- Step 1:
 - Hash S into M buckets
- send all buckets to disk
- Step 2
 - Hash R into M buckets
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets

25

Partitioned Hash Join

- Cost: 3B(R) + 3B(S)
- Assumption: $min(B(R), B(S)) \le M^2$

27

Hybrid Hash Join Algorithm

- Partition S into k buckets
- But keep first bucket S_1 in memory, k-1 buckets to disk
- Partition R into k buckets
 - First bucket R₁ is joined immediately with S₁
 - Other k-1 buckets go to disk
- Finally, join k-1 pairs of buckets:
 - $-\,(R_2,\!S_2),\,(R_3,\!S_3),\,...,\,(R_k,\!S_k)$

28

Hybrid Join Algorithm

- How big should we choose k?
- Average bucket size for S is B(S)/k
- Need to fit B(S)/k + (k-1) blocks in memory
 - $-B(S)/k + (k-1) \le M$
 - k slightly smaller than B(S)/M

29

Hybrid Join Algorithm

- How many I/Os?
- · Recall: cost of partitioned hash join:
 - -3B(R) + 3B(S)
- Now we save 2 disk operations for one bucket
- Recall there are k buckets
- Hence we save 2/k(B(R) + B(S))
- Cost: (3-2/k)(B(R) + B(S)) =(3-2M/B(S))(B(R) + B(S))

Indexed Based Algorithms

• Recall that in a clustered index all tuples with the same value of the key are clustered on as few blocks as possible

a a a a a a a a a a a a

• Note: book uses another term: "clustering index". Difference is minor...

31

Index Based Selection

• Selection on equality: $\sigma_{a=v}(R)$

• Clustered index on a: cost B(R)/V(R,a)

• Unclustered index on a: cost T(R)/V(R,a)

32

Index Based Selection

- Example: B(R) = 2000, T(R) = 100,000, V(R, a)
 - = 20, compute the cost of $\sigma_{a=v}(R)$
- · Cost of table scan:
 - If R is clustered: B(R) = 2000 I/Os
 - If R is unclustered: T(R) = 100,000 I/Os
- · Cost of index based selection:
 - If index is clustered: B(R)/V(R,a) = 100
 - If index is unclustered: T(R)/V(R,a) = 5000
- Notice: when V(R,a) is small, then unclustered index is useless

33

Index Based Join

- R ⋈ S
- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Assume R is clustered. Cost:
 - If index is clustered: B(R) + T(R)B(S)/V(S,a)
 - If index is unclustered: B(R) + T(R)T(S)/V(S,a)

34

Index Based Join

- Assume both R and S have a sorted index (B+ tree) on the join attribute
- Then perform a merge join (called zig-zag join)
- Cost: B(R) + B(S)