Lecture 21:

Wednesday, November 20, 2002

Outline

Query execution: 15.1 —15.5

One-pass Algorithms

Hash join: RS
* Scan S, build buckets in main memory
* Then scan R and join

* Cost: B(R) + B(S)
* Assumption: B(S) <=M

One-pass Algorithms

Duplicate elimination 5(R)

Need to keep tuples in memory

When new tuple arrives, need to compare it
with previously seen tuples

Balanced search tree, or hash table
Cost: B(R)
Assumption: B(§(R)) <=M

Question in Class

Grouping:
Product(name, department, quantity)

ydepartmem, sum(quantity) (PrOduCt) 2
Answer(department, sum)

Question: how do you compute it in main
memory ?

Answer:

One-pass Algorithms

Grouping: Ya, sum(b) R)

Need to store all a’s in memory
Also store the sum(b) for each a
Balanced search tree or hash table
Cost: B(R)

Assumption: number of cities fits in
memory

One-pass Algorithms

Binary operations: RnS,RuS,R-S

* Assumption: min(B(R), B(S)) <=M

¢ Scan one table first, then the next, eliminate
duplicates

* Cost: B(R)+B(S)

Question in Class

Fill in missing H € emptyHashTable
lines to
compute Ru S /* scan R */
For each x in R do
insert(H,)
/* scan S */

For each y in S do

/* collect result */
for each z in H do

Question in Class

Fill in missing H € emptyHashTable
lines to
compute R - S /* scan R */
For each x in R do
insert(H,)
/* scan S */

For each y in S do

/* collect result */
for each z in H do

Question in Class

Fill in missing H € emptyHashTable
lines to
compute Rn' S /* scan R */
For each x in R do
insert(H,)
/* scan S */

For each y in S do

/* collect result */
for each z in H do

Nested Loop Joins

* Tuple-based nested loop R X S

for each tuple rin R do
for each tuple s in S do

if r and s join then output (r,s)

e Cost: T(R) T(S), sometimes T(R) B(S)

Nested Loop Joins
* We can be much more clever

* Question: how would you compute the join in the
following cases ? What is the cost ?

— B(R) = 1000, B(S) =2, M =4
~ B(R) = 1000, B(S) =4, M =4

~ B(R) = 1000, B(S) = 6, M =4

Nested Loop Joins

» Block-based Nested Loop Join

for each (M-1) blocks bs of S do
for each block br of R do
for each tuple s in bs
for each tuple r in br do

if r and s join then output(r,s)

Nested Loop Joins

R&S Join Result
Hash table for block of S —

(k <B-1 pages)

BEE

Input buffer for R Output buffer

Nested Loop Joins

* Block-based Nested Loop Join
¢ Cost:
— Read S once: cost B(S)

— Outer loop runs B(S)/(M-1) times, and each
time need to read R: costs B(S)B(R)/(M-1)

— Total cost: B(S) + B(S)B(R)/(M-1)
* Notice: it is better to iterate over the smaller
relation first

¢ R S: R=outer relation, S=inner relation

15

Two-Pass Algorithms Based on
Sorting

 Recall: multi-way merge sort needs only
two passes !

 Assumption: B(R) <= M?
 Cost for sorting: 3B(R)

Two-Pass Algorithms Based on
Sorting

Duplicate elimination 3(R)
 Trivial idea: sort first, then eliminate duplicates
» Step 1: sort chunks of size M, write

— cost 2B(R)

» Step 2: merge M-1 runs, but include each tuple
only once
— cost B(R)

* Total cost: 3B(R), Assumption: B(R) <= M?

Two-Pass Algorithms Based on
Sorting

GI'OllpiIlgI Ya, sum(b) (R)
» Same as before: sort, then compute the
sum(b) for each group of a’s

 Total cost: 3B(R)
* Assumption: B(R) <= M?

Two-Pass Algorithms Based on
Sorting

Binary operations: RuS,RnS,R—-S
* Idea: sort R, sort S, then do the right thing
* A closer look:

— Step 1: split R into runs of size M, then split S into runs
of size M. Cost: 2B(R) + 2B(S)

— Step 2: merge M/2 runs from R; merge M/2 runs from
S; ouput a tuple on a case by cases basis

» Total cost: 3B(R)+3B(S)
+ Assumption: B(R)+B(S)<= M?

Two-Pass Algorithms Based on
Sorting

JoinR XS
* Start by sorting both R and S on the join attribute:
— Cost: 4B(R)+4B(S) (because need to write to disk)
» Read both relations in sorted order, match tuples
— Cost: B(R)+B(S)
« Difficulty: many tuples in R may match many in S
— If at least one set of tuples fits in M, we are OK
— Otherwise need nested loop, higher cost
Total cost: SB(R)+5B(S)
* Assumption: B(R) <= M2, B(S) <= M?

20

Two-Pass Algorithms Based on
Sorting

JoinR XS

« If the number of tuples in R matching those
in S is small (or vice versa) we can compute
the join during the merge phase

 Total cost: 3B(R)+3B(S)

 Assumption: B(R)+ B(S) <= M?

Two Pass Algorithms Based on
Hashing

* Idea: partition a relation R into buckets, on disk
* Each bucket has size approx. B(R)M

ouTPUT Partitions
1
1 L
INPUT
L[] naiethn
h

B(R) |

Disk M main memory buffers Disk
» Does each bucket fit in main memory ?

~ Yesif BRYM <=M, i.e. B(R) <= M2 »

Hash Based Algorithms for &

» Recall: 3(R) = duplicate elimination
« Step 1. Partition R into buckets

 Step 2. Apply & to each bucket (may read in
main memory)

Cost: 3B(R)
+ Assumption:B(R) <= M?

Hash Based Algorithms for y

Recall: y(R) = grouping and aggregation
« Step 1. Partition R into buckets

Step 2. Apply y to each bucket (may read in
main memory)

Cost: 3B(R)
+ Assumption:B(R) <= M?

24

Partitioned Hash Join

RS
» Step 1:
— Hash S into M buckets
— send all buckets to disk
e Step 2
— Hash R into M buckets
— Send all buckets to disk
» Step 3

— Join every pair of buckets

* Partition both relations

Disk B main memory buffers
Partitions
of R&S Join Result
. L Hash table for partition
% Read in a partition hash Si (< M-1 pages) —
of R, hash it using oo v O - O
h2 (<> h!). Scan oo
matching partition e h2 N
Input buff Output
of St, }s:earch for 00 put uffer - Outpu
matches.
Disk B main memory buffers Digk

Original

Hash_JO in Relation OuTPUT Partitions

INPUT
using hash fn h: R o [it
tuples in partition i will h
only match S tuples in
partition i.

Partitioned Hash Join

* Cost: 3B(R) + 3B(S)
+ Assumption: min(B(R), B(S)) <= M?

Hybrid Hash Join Algorithm

¢ Partition S into k buckets

* But keep first bucket S, in memory, k-1
buckets to disk

 Partition R into k buckets

— First bucket R, is joined immediately with S,
— Other k-1 buckets go to disk

* Finally, join k-1 pairs of buckets:
- (R2’S2)’ (R3’S3)’ s (Rk’sk)

28

Hybrid Join Algorithm

* How big should we choose k ?

» Average bucket size for S is B(S)/k

* Need to fit B(S)/k + (k-1) blocks in memory
“BEO)k + (k-1) <=M
— k slightly smaller than B(S)/M

Hybrid Join Algorithm

* How many I/Os ?
» Recall: cost of partitioned hash join:
— 3B(R) + 3B(S)

» Now we save 2 disk operations for one bucket

Recall there are k buckets

* Hence we save 2/k(B(R) + B(S))

Cost: (3-2/k)(B(R) + B(S)) =
(3-2M/B(S))(B(R) + B(S))

30

Indexed Based Algorithms

Recall that in a clustered index all tuples
with the same value of the key are clustered
on as few blocks as possible

‘ aaa‘ ‘aaaaa‘ ‘aa ‘

» Note: book uses another term: “clustering
index”. Difference is minor...

Index Based Selection
* Selection on equality: c,_,(R)

¢ Clustered index on a: cost B(R)/V(R,a)
* Unclustered index on a: cost T(R)/V(R,a)

32

Index Based Selection

Example: B(R) =2000, T(R) = 100,000, V(R, a)
=20, compute the cost of 5,_(R)

Cost of table scan:

— If R is clustered: B(R) = 2000 I/Os

— If R is unclustered: T(R) = 100,000 I/Os
» Cost of index based selection:

— Ifindex is clustered: B(R)/V(R,a) = 100

— Ifindex is unclustered: T(R)/V(R,a) = 5000
Notice: when V(R,a) is small, then unclustered
index is useless

Index Based Join

* RXS

» Assume S has an index on the join attribute

« Iterate over R, for each tuple fetch
corresponding tuple(s) from S

* Assume R is clustered. Cost:
— If index is clustered: B(R) + T(R)B(S)/V(S,a)
— If index is unclustered: B(R) + T(R)T(S)/V(S,a)

34

Index Based Join

» Assume both R and S have a sorted index
(B+ tree) on the join attribute

* Then perform a merge join (called zig-zag
join)

* Cost: B(R) + B(S)

