Lecture 20: Query Execution

Monday, November 18, 2002

1

Outline

• Query execution: 15.1 – 15.5

2

Architecture of a Database Engine

An Algebra for Queries

- · Logical operators
 - what they do
- · Physical operators
 - <u>how</u> they do it

4

Logical Operators in the Algebra

Relational

Algebra

- Union, intersection, difference
- Selection σ
- Projection Π
- Join ⋈
- Duplicate elimination δ
- Grouping γ
- Sorting τ

Example

SELECT city, count(*) FROM sales GROUP BY city HAVING sum(price) > 100

saics

Question in Class

Logical operator:

Product(pname, cname) ⋈ Company(cname, city)

Propose three physical operators for the join, assuming the tables are in main memory:

1.

2.

3.

8

Question in Class

Product(pname, cname) ⋈ Company(cname, city)

- 1000000 products
- 1000 companies

How much time do the following physical operators take if the data is **in main memory**?

Nested loop join time =

Sort and merge = merge-join time =

Hash join time

Cost Parameters

In database systems the data is on *disks*, not in main memory

The *cost* of an operation = total number of I/Os Cost parameters:

- B(R) = number of blocks for relation R
- T(R) = number of tuples in relation R
- V(R, a) = number of distinct values of attribute a

10

Cost Parameters

- · Clustered table R:
 - Blocks consists only of records from this table
 - $B(R) \approx T(R) / blockSize$
- · Unclustered table R:
 - Its records are placed on blocks with other tables
 - When R is unclustered: $B(R) \approx T(R)$
- When a is a key, V(R,a) = T(R)
- When a is not a key, V(R,a)

11

Cost

Cost of an operation = number of disk I/Os needed to:

- read the operands
- compute the result

Cost of writing the result to disk is *not included* on the following slides

Question: the cost of sorting a table with B blocks? *Answer*:

Scanning Tables

- The table is *clustered*:
 - Table-scan: if we know where the blocks are
 - Index scan: if we have a sparse index to find the blocks
- The table is unclustered
 - May need one read for each record

13

Sorting While Scanning

- Sometimes it is useful to have the output sorted
- Three ways to scan it sorted:
 - If there is a primary or secondary index on it, use it during scan
 - If it fits in memory, sort there
 - If not, use multi-way merge sort

14

Cost of the Scan Operator

- · Clustered relation:
 - Table scan:
 - Unsorted: B(R)
 - Sorted: 3B(R)
 - Index scan
 - Unsorted: B(R)
 - Sorted: B(R) or 3B(R)
- Unclustered relation
 - Unsorted: T(R)
 - Sorted: T(R) + 2B(R)

15

One-Pass Algorithms

Selection $\sigma(R)$, projection $\Pi(R)$

- Both are tuple-at-a-time algorithms
- Cost: B(R)

Input buffer Unary operator Output buffer

16

One-pass Algorithms

Hash join: $R \bowtie S$

• Scan S, build buckets in main memory

• Then scan R and join

• Cost: B(R) + B(S)

• Assumption: $B(S) \le M$

17

One-pass Algorithms

Duplicate elimination $\delta(R)$

- Need to keep tuples in memory
- When new tuple arrives, need to compare it with previously seen tuples
- · Balanced search tree, or hash table
- Cost: B(R)
- Assumption: $B(\delta(R)) \le M$

Question in Class

Grouping:

 $\begin{array}{c} Product(name, department, quantity) \\ \gamma_{department, \ sum(quantity)} \ (Product) \Rightarrow \\ Answer(department, \ sum) \end{array}$

Question: how do you compute it in main memory?

Answer:

19

One-pass Algorithms

Grouping: $\gamma_{a, sum(b)}(R)$

- · Need to store all a's in memory
- Also store the sum(b) for each a
- · Balanced search tree or hash table
- Cost: B(R)
- Assumption: number of cities fits in memory

20

One-pass Algorithms

Binary operations: $R \cap S$, $R \cup S$, R - S

- Assumption: $min(B(R), B(S)) \le M$
- Scan one table first, then the next, eliminate duplicates
- Cost: B(R)+B(S)

21

Nested Loop Joins

• Tuple-based nested loop $R \bowtie S$

<u>for</u> each tuple r in R <u>do</u><u>for</u> each tuple s in S <u>do</u><u>if</u> r and s join <u>then</u> output (r,s)

• Cost: T(R) T(S), sometimes T(R) B(S)

22

Nested Loop Joins

- We can be much more clever
- *Question*: how would you compute the join in the following cases? What is the cost?
 - B(R) = 1000, B(S) = 2, M = 4
 - B(R) = 1000, B(S) = 4, M = 4
 - B(R) = 1000, B(S) = 6, M = 4

23

Nested Loop Joins

· Block-based Nested Loop Join

for each (M-1) blocks bs of S do
for each block br of R do
for each tuple s in bs
for each tuple r in br do
if r and s join then output(r,s)

Nested Loop Joins

Nested Loop Joins

- · Block-based Nested Loop Join
- - Read S once: cost B(S)
 - Outer loop runs B(S)/(M-1) times, and each time need to read R: costs B(S)B(R)/(M-1)
 - Total cost: B(S) + B(S)B(R)/(M-1)
- Notice: it is better to iterate over the smaller relation first
- R ⋈ S: R=outer relation, S=inner relation

Two-Pass Algorithms Based on Sorting

- · Recall: multi-way merge sort needs only two passes!
- Assumption: $B(R) \le M^2$

• Cost for sorting: 3B(R)

29

Two-Pass Algorithms Based on Sorting

Duplicate elimination $\delta(R)$

- · Trivial idea: sort first, then eliminate duplicates
- Step 1: sort chunks of size M, write cost 2B(R)
- · Step 2: merge M-1 runs, but include each tuple only once
 - cost B(R)
- Total cost: 3B(R), Assumption: $B(R) \le M^2$

Two-Pass Algorithms Based on Sorting

Grouping: $\gamma_{a, \text{sum}(b)}(R)$

- Same as before: sort, then compute the sum(b) for each group of a's
- Total cost: 3B(R)
- Assumption: $B(R) \le M^2$

Two-Pass Algorithms Based on Sorting

Binary operations: $R \cup S$, $R \cap S$, R - S

- Idea: sort R, sort S, then do the right thing
- · A closer look:
 - Step 1: split R into runs of size M, then split S into runs of size M. Cost: 2B(R) + 2B(S)
 - Step 2: merge M/2 runs from R; merge M/2 runs from S; ouput a tuple on a case by cases basis
- Total cost: 3B(R)+3B(S)
- Assumption: B(R)+B(S)<= M²

30

Two-Pass Algorithms Based on Sorting

Join $R \bowtie S$

- Start by sorting both R and S on the join attribute:
 Cost: 4B(R)+4B(S) (because need to write to disk)
- Read both relations in sorted order, match tuples
 Cost: B(R)+B(S)
- Difficulty: many tuples in R may match many in \boldsymbol{S}
 - $-% \frac{1}{2}\left(-\right) =-\left(-\right) =-$
- Otherwise need nested loop, higher cost
- Total cost: 5B(R)+5B(S)
- Assumption: $B(R) \le M^2$, $B(S) \le M^2$

31

Two-Pass Algorithms Based on Sorting

Join R ⋈ S

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3B(R)+3B(S)
- Assumption: $B(R) + B(S) \le M^2$

32

Two Pass Algorithms Based on Hashing

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M

- Does each bucket fit in main memory?
 - Yes if $B(R)/M \le M$, i.e. $B(R) \le M^2$

Hash Based Algorithms for δ

- Recall: $\delta(R)$ = duplicate elimination
- Step 1. Partition R into buckets
- Step 2. Apply δ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption:B(R) <= M²

34

Hash Based Algorithms for γ

- Recall: $\gamma(R)$ = grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption:B(R) \leq = M²

35