Lecture 20:
Query Execution

Monday, November 18, 2002

Outline

* Query execution: 15.1 —15.5

Architecture of a Database Engine

SQL query

plan
Select Physical Plan
Physical
plan

Query
optimization

An Algebra for Queries

 Logical operators
— what they do

« Physical operators
— how they do it

Logical Operators in the Algebra

¢ Union, intersection, difference

 Selection & Relational
* Projection IT Algebra
» Join X

* Duplicate elimination &

* Grouping y

* Sorting t

Example

SELECT city, count(*) o

FROM sales city, ¢
GROUP BY city ‘
HAVING sum(price) > 100 S po 100
Y city, sum(price)—p, count(*) — ¢
sales

Physical Operators

SELECT S.buyer

FROM Purchase P, Person Q

WHERE P.buyer=Q.name AND
Q.city="seattle” AND
Q.phone > ‘5430000’

I buyer

(¢}
City='seattle’’\ phone>'5430000"

Query Plan: B
. logical tree Buyer=name (Simple Nested Loops)
* lmplementatlon Purchase Person
choice at every (Table scan) (Index scan)
node
» scheduling of Some operators are from relational
. algebra, and others (e.g., scan, group)
operations. are not. !

Question in Class

Logical operator:
Product(pname, cname) M Company(cname, city)

Propose three physical operators for the join, assuming
the tables are in main memory:

Question in Class

Product(pname, cname) X Company(cname, city)

« 1000000 products
* 1000 companies

How much time do the following physical operators take if the data

is in main memory ?

¢ Nested loop join time =
* Sort and merge = merge-join time =
e Hash join time =

Cost Parameters

* Clustered table R:

— Blocks consists only of records from this table

— B(R) = T(R) / blockSize
e Unclustered table R:

— Its records are placed on blocks with other tables

— When R is unclustered: B(R) ~ T(R)

* When ais akey, V(R,a) =T(R)
* When a is not a key, V(R,a)

Cost Parameters

In database systems the data is on disks, not in main
memory

The cost of an operation = total number of I/Os
Cost parameters:

* B(R) = number of blocks for relation R
* T(R) = number of tuples in relation R
* V(R, a) = number of distinct values of attribute a

Cost

Cost of an operation =
number of disk I/Os needed to:
— read the operands
— compute the result

Cost of writing the result to disk is not included on the
following slides

Question: the cost of sorting a table with B blocks ?
Answer:

Scanning Tables

e The table is clustered:
— Table-scan: if we know where the blocks are

— Index scan: if we have a sparse index to find the
blocks

* The table is unclustered
— May need one read for each record

Sorting While Scanning

» Sometimes it is useful to have the output
sorted
» Three ways to scan it sorted:

— If there is a primary or secondary index on it,
use it during scan

— If it fits in memory, sort there
— If not, use multi-way merge sort

Cost of the Scan Operator

¢ Clustered relation:
— Table scan:
« Unsorted: B(R)
« Sorted: 3B(R)
— Index scan
 Unsorted: B(R)
« Sorted: B(R) or 3B(R)
* Unclustered relation
— Unsorted: T(R)
— Sorted: T(R) + 2B(R)

One-Pass Algorithms

Selection o(R), projection IT(R)
* Both are tuple-at-a-time algorithms
¢ Cost: B(R)

Input buffer |— Unary Output buffer

operator

One-pass Algorithms

Hash join: RS
 Scan S, build buckets in main memory
* Then scan R and join

* Cost: B(R) + B(S)
* Assumption: B(S) <=M

One-pass Algorithms

Duplicate elimination 6(R)
* Need to keep tuples in memory

* When new tuple arrives, need to compare it
with previously seen tuples

« Balanced search tree, or hash table
Cost: B(R)
* Assumption: B(6(R)) <=M

Question in Class

Grouping:
Product(name, department, quantity)

ydepartmem, sum(quantity) (PrOduCt) 2
Answer(department, sum)

Question: how do you compute it in main
memory ?

Answer:

One-pass Algorithms

Grouping: ¥, gumw) (R)

* Need to store all a’s in memory

* Also store the sum(b) for each a

 Balanced search tree or hash table

¢ Cost: B(R)

* Assumption: number of cities fits in
memory

20

One-pass Algorithms

Binary operations: RnS,RuS,R—-S

* Assumption: min(B(R), B(S)) <=M

* Scan one table first, then the next, eliminate
duplicates

* Cost: B(R)*B(S)

Nested Loop Joins

* Tuple-based nested loop R X S

for each tuple r in R do
for each tuple s in S do
if r and s join then output (r,s)

» Cost: T(R) T(S), sometimes T(R) B(S)

22

Nested Loop Joins
* We can be much more clever

* Question: how would you compute the join in the
following cases ? What is the cost ?

— B(R) = 1000, B(S) =2, M =4
~ B(R) = 1000, B(S) =4, M =4

~ B(R) = 1000, B(S) = 6, M =4

Nested Loop Joins

* Block-based Nested Loop Join

for each (M-1) blocks bs of S do
for each block br of R do
for each tuple s in bs

for each tuple r in br do

if r and s join then output(r,s)

24

Nested Loop Joins

R&S Join Result
Hash table for block of S —

(k <B-1 pages)

Input buffer for R Output buffer

Nested Loop Joins

* Block-based Nested Loop Join
* Cost:
— Read S once: cost B(S)

— Outer loop runs B(S)/(M-1) times, and each
time need to read R: costs B(S)B(R)/(M-1)

— Total cost: B(S) + B(S)B(R)/(M-1)
« Notice: it is better to iterate over the smaller
relation first

R X S: R=outer relation, S=inner relation

26

Two-Pass Algorithms Based on
Sorting

* Recall: multi-way merge sort needs only
two passes !

+ Assumption: B(R) <= M?
 Cost for sorting: 3B(R)

Two-Pass Algorithms Based on
Sorting

Duplicate elimination 3(R)
* Trivial idea: sort first, then eliminate duplicates
» Step 1: sort chunks of size M, write
— cost 2B(R)
» Step 2: merge M-1 runs, but include each tuple
only once
— cost B(R)
* Total cost: 3B(R), Assumption: B(R) <= M?

28

Two-Pass Algorithms Based on
Sorting

GI'OllpiIlgI Ya, sum(b) (R)
» Same as before: sort, then compute the
sum(b) for each group of a’s

 Total cost: 3B(R)
* Assumption: B(R) <= M?

Two-Pass Algorithms Based on
Sorting

Binary operations: RuS,RnS,R—-S
* Idea: sort R, sort S, then do the right thing
* A closer look:

— Step 1: split R into runs of size M, then split S into runs
of size M. Cost: 2B(R) + 2B(S)

— Step 2: merge M/2 runs from R; merge M/2 runs from
S; ouput a tuple on a case by cases basis

» Total cost: 3B(R)+3B(S)
+ Assumption: B(R)+B(S)<= M?

30

Two-Pass Algorithms Based on
Sorting

JoinR XS

* Start by sorting both R and S on the join attribute:
— Cost: 4B(R)+4B(S) (because need to write to disk)

» Read both relations in sorted order, match tuples
— Cost: B(R)+B(S)

« Difficulty: many tuples in R may match many in S
— If at least one set of tuples fits in M, we are OK
— Otherwise need nested loop, higher cost

» Total cost: 5SB(R)+5B(S)

* Assumption: B(R) <= M2, B(S) <= M?

Two-Pass Algorithms Based on
Sorting
JoinR I S

« If the number of tuples in R matching those
in S is small (or vice versa) we can compute
the join during the merge phase

 Total cost: 3B(R)+3B(S)
 Assumption: B(R)+ B(S) <= M?

32

Two Pass Algorithms Based on
Hashing

* Idea: partition a relation R into buckets, on disk
* Each bucket has size approx. B(R)M

ouTPUT Partitions
1
1 L
INPUT
L[] nethn
h

B(R) |

Disk M main memory buffers Disk
» Does each bucket fit in main memory ?

~ Yesif BRYM <=M, i.e. B(R) <= M2 -

Hash Based Algorithms for &

Recall: &(R) = duplicate elimination
 Step 1. Partition R into buckets

» Step 2. Apply 8 to each bucket (may read in
main memory)

Cost: 3B(R)
+ Assumption:B(R) <= M?

Hash Based Algorithms for y

» Recall: y(R) = grouping and aggregation
« Step 1. Partition R into buckets

 Step 2. Apply v to each bucket (may read in
main memory)

e Cost: 3B(R)
+ Assumption:B(R) <= M?

