
1

1

Lecture 18: Indexes

Wednesday, November 13, 2002

2

Outline

• Index structures (13.1, 13.2)

• B-trees (13.3)

Administrative:

• HW4 due on Monday, 11/18

Indexes

• An index on a file speeds up selections on the
search key fields for the index.
– Any subset of the fields of a relation can be the search

key for an index on the relation.

– Search key is not the same as key (minimal set of fields
that uniquely identify a record in a relation).

• An index contains a collection of data entries, and
supports efficient retrieval of all data entries with
a given key value k.

4

Index Classification

• Primary/secondary
– Primary = may reorder data according to index

– Secondary = cannot reorder data

• Clustered/unclustered
– Clustered = records close in the index are close in the data

– Unclustered = records close in the index may be far in the data

• Dense/sparse
– Dense = every key in the data appears in the index

– Sparse = the index contains only some keys

• B+ tree / Hash table / …

5

Primary Index

• File is sorted on the index attribute

• Dense index: sequence of (key,pointer) pairs

40

30

20

10

80

70

60

50

20

10

40

30

60

50

80

70
6

Primary Index

• Sparse index

70

50

30

10

150

130

110

90

20

10

40

30

60

50

80

70

2

7

Primary Index with Duplicate
Keys

• Dense index:

40

30

20

10

80

70

60

50

10

10

20

10

20

20

40

30

8

Primary Index with Duplicate
Keys

• Sparse index: pointer to lowest search key
in each block:

• Search for 20

30

20

10

10

10

10

20

10

20

20

40

30

20 is
here...

...but
need to
search

here too

9

• Better: pointer to lowest new search key in
each block:

• Search for 20

• Search for 15 ? 35 ?

Primary Index with Duplicate
Keys

40

30

20

10

80

70

60

50

10

10

20

10

30

30

50

40

20 is
here...

...ok to
search

from here

30

30

10

Secondary Indexes

• To index other attributes than primary key

• Always dense (why ?)

20

20

10

10

30

30

30

20

30

20

20

30

20

10

30

10

11

Clustered/Unclustered

• Primary indexes = usually clustered

• Secondary indexes = usually unclustered

Clustered vs. Unclustered Index

Data entries
(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

3

13

Secondary Indexes

• Applications:
– index other attributes than primary key

– index unsorted files (heap files)

– index clustered data

14

Applications of Secondary Indexes

• Secondary indexes needed for heap files

• Also for Clustered data:

Company(name, city), Product(pid, maker)
Select city
From Company, Product
Wherename=maker

and pid=“p045”

Select city
From Company, Product
Wherename=maker

and pid=“p045”

Select pid
From Company, Product
Wherename=maker

and city=“Seattle”

Select pid
From Company, Product
Wherename=maker

and city=“Seattle”

Company 1 Company 2 Company 3

Products of company 1 Products of company 2 Products of company 3

Composite Search Keys

• Composite Search Keys: Search
on a combination of fields.

– Equality query: Every field
value is equal to a constant
value. E.g. wrt <sal,age>
index:

• age=20 and sal =75

– Range query: Some field
value is not a constant. E.g.:

• age =20; or age=20 and
sal > 10

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

16

B+ Trees

• Search trees

• Idea in B Trees:
– make 1 node = 1 block

• Idea in B+ Trees:
– Make leaves into a linked list (range queries are

easier)

17

• Parameter d = the degree

• Each node has >= d and <= 2d keys (except root)

• Each leaf has >=d and <= 2d keys:

B+ Trees Basics

24012030

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

605040

40 50 60

Next leaf

18

B+ Tree Example

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

4

19

B+ Tree Design

• How large d ?

• Example:
– Key size = 4 bytes

– Pointer size = 8 bytes

– Block size = 4096 byes

• 2d x 4 + (2d+1) x 8 <= 4096

• d = 170

20

Searching a B+ Tree

• Exact key values:
– Start at the root

– Proceed down, to the leaf

• Range queries:
– As above

– Then sequential traversal

Select name
From people
Whereage = 25

Select name
From people
Whereage = 25

Select name
From people
Where20 <= age
and age <= 30

Select name
From people
Where20 <= age
and age <= 30

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

22

Insertion in a B+ Tree

Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, keep K3 too in right node
• When root splits, new root has 1 key only

p5

K5

P4P3P2P1

K4K2 K3

P0

K1

P2P1

K2

P0

K1

p5P4

K5

P3

K4

parent
K3

parent

23

Insertion in a B+ Tree

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

24

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

5

25

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

26

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

27

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

28

Insertion in a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

40 5030

29

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

40 5030

30

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

5040

May change to
40, or not

6

31

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

5040

32

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 20 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

5040

33

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

5040

34

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to merge nodes

50

50

35

Deletion from a B+ Tree

80

6019 120 140100

15 1810 20 5019 6560 85 9080

10 15 18 20 60 65 80 85 9019

Final tree

50

