Lecture 18: Indexes

Wednesday, November 13, 2002

Outline

e Index structures (13.1, 13.2)
* B-trees(13.3)

Administrative:
e HW4 due on Monday, 11/18

Indexes

e Anindex on afile speeds up selections on the
search key fields for the index.

— Any subset of the fields of arelation can be the search
key for an index on therelation.

— Search key is not the same as key (minimal set of fields
that uniquely identify arecord in arelation).
¢ Anindex contains a collection of data entries, and
supports efficient retrieval of al data entries with
agiven key valuek.

Index Classification

 Primary/secondary
— Primary = may reorder data according to index
— Secondary = cannot reorder data
* Clustered/unclustered
— Clugtered = records close in the index are close in the data
— Unclustered = records close in the index may be far in the data
» Dense/sparse
— Dense = every key in the data appearsin the index
— Sparse = theindex contains only some keys
» B+tree/Hashtable/ ...

Primary Index

* Fileissorted on the index attribute
» Denseindex: sequence of (key,pointer) pairs

|
5[]

|
3

Bl3(8|8

i

Primary Index

e Sparseindex
T o]
£
B I

HEBE
ii%%

Primary Index with Duplicate
Keys

<2

* Denseindex:

HH

Primary Index with Duplicate
Keys

e Sparse index: pointer to lowest search key
in each block:

HEIEE

20is
here...

Primary Index with Duplicate

Keys
 Better: pointer to lowest new search key in
each block: O E—

¢ Search for 20

IR

HEIEE

2
20is k)

..ok to

° [—

30 from here

HEIEIE
i
8|8

.]
Search for 15?35 ? _

Secondary Indexes

e Toindex other attributes than primary key
e Always dense (why ?)

glglg|s

10

Clustered/Unclustered

e Primary indexes = usually clustered
e Secondary indexes = usually unclustered

1

Clustered vs. Unclustered Index

Data entries /

.

Dataentries

CLUSTERED UNCLUSTERED

Secondary Indexes

» Applications:
— index other attributes than primary key
— index unsorted files (heap files)

Applications of Secondary Indexes

» Secondary indexes needed for heap files
* Alsofor Clustered data:
Company(name, city), Product(pid, maker)

— index clustered data
13
Composite Search Keys
* Composite Search Keys: Search Examples of composite key
on a.combination of fields. indexes using lexicographic order.
— Equality query: Every field 110
vaueis equd to aconstant
value. E.g. wrt <sal,age> s
index: 1828
<age, sal>
» age=20 and sal =75 <
— Range query: Some field 10
valueis not a constant. E.g.: -
* age =20; or age=20 and 80
sa > 10 <sal>
Data entries in index Data entries
sorted by <sal,age> sorted by <sal>

B+ Trees Basics

e Parameter d = the degree

e Each node has >= d and <= 2d keys (except root)
EINE

Keys30<=k<120 Keys120<=k<240 Keys 240<=k

 Each leaf has >=d and <= 2d keys:

[0 [so] 0]
ERNEENE Nextleat

Keysk <30

17

Select city Select pid

From Company, Product From Company, Product

Where name=maker Where name=maker

and pid="p045" and city="Seattle’
Products of company 1 Products of company 2 Products of company 3
— — —
Company 1 Company 2 Company 3
1
B+ Trees
 Search trees

e ldeain B Trees.
— make 1 node = 1 block
e |deain B+ Trees:

— Make leavesinto alinked list (range queries are
easier)

16

B+ Tree Example

Find the key 40

20 | 60 100 | 120 | 140

20440560

|10‘15‘15‘ 20‘30‘40‘%”60‘65‘ ||a‘55‘90‘ |

LI \ [0 \+IHHH

oo e e

18

B+ Tree Design

e How larged ?
* Example:
— Key size=4 bytes
— Pointer size = 8 bytes
— Block size = 4096 byes
e 2dx 4 +(2d+1) x 8 <= 4096
e d=170

Searching aB+ Tree

e Exact key values:

Select name
— Start at the root From people
— Proceed down, to the |eaf Where age =25
¢ Range queries: Select name
_ From people
As above ' Where 20 <= age
— Then sequential traversal and age<=30

20

B+ Treesin Practice

* Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133
« Typical capacities:
— Height 4: 1334 = 312,900,700 records
— Height 3: 133 = 2,352,637 records
» Can often hold top levelsin buffer pool:
— Level 1= 1page = 8Kbytes
— Level 2= 133 pages= 1 Mbyte
— Level 3 = 17,689 pages = 133 MBytes

Insertion in aB+ Tree

Insert (K, P)

¢ Find leaf where K belongs, insert

« If no overflow (2d keys or less), halt

« If overflow (2d+1 keys), split node, insert in parent:

parent parent
K3

[kiTk2] k3] ka] ks [k Jea] T [kaJrs]]

|
[rolPil e [pa]| —> [Pol e[[|[refrelos]

« If leaf, keep K3 too in right node
* When root splits, new root has 1 key only

Insertion in aB+ Tree

Insert K=19
o] [[|
I!--l
[20]eo]] |100\1zo\14o\ |
= \l \Kl\\
[o]ss]ss] | 20\30\40\5°||6°\65\ \ ||8°\55\9°\ |
[NNNEEEAENNECH [P

- blateislad

Insertion in aB+ Tree

After insertion

20 | 60 100 | 120 | 140

|10‘15‘15‘19| 20‘30‘40‘%”60‘65‘ ||a‘55‘90‘ |

e ENE \ [

bl e

2

Insertionin aB+ Tree

Now insert 25
[0 [[|
[20]eo] T] [100[120 240]
|1o‘ [1]10] [20]0]ao]s0][eoJes] T [[eo]es] 90‘ |
RENENE NS PEE 2

BETRIN

Insertionin aB+ Tree

After insertion

20 | 60 100 | 120 | 140

|1o‘ ‘13‘19| 20‘25‘30‘ ‘so||eo‘es‘ [||ao‘ss‘90‘

AT

il

Insertion in aB+ Tree

But now have to split !

[20]eo] T] [100[120 140]

AN NI

e

|1‘15‘15‘19 20‘25‘

Ilw\eﬁ'\%\ I

\
[P T T

i,

Insertion in aB+ Tree
After the split

10|15|18 |19 20 |25

I3°\ \50\ ([elel 1 8\55\90\

e+ T

oilhed kg

Deletion from aB+ Tree

LN S

0]15]18]19| [20]25 |30‘ ‘50‘ ”eo‘ ‘ |80‘ ‘90‘

NI

iviv AN

Deletion from aB+ Tree
After deleting 30

10|15|18 |19 20 |25

I4°\5°\ \ [lel T J[lelx

I
Lt & T

I
11

IR TRVANI

Deletion from aB+ Tree

Now delete 25
EX
[20]30]e][] [100[120 240]
[T Ql S #l\
10]15]18 19| [20]25 |40‘so‘ ‘ |so‘ ‘ |so‘ ‘90‘

[kl ¢ XL\@{ /.

Deletion from aB+ Tree

After deleting 25
Need to rebalance
Rotate

\\

10[15]18]19] [20 |40‘so‘ B |so‘ ‘90‘

ARAY \,..m

Deletion from aB+ Tree

Now delete 40
[0 [[|
L[[T[]
19\30\ | [100[120 140]
/ \ \X‘L&\l\\‘
10 [15] 18 19 [20 |4o‘50‘ ‘ ”eo‘ ‘ a ‘0‘ |

BN

VN

Deletion from aB+ Tree

After deleting 40
Rotation not possiblg
Need to merge nodeq

10 |15 18 |19 |20 50 80 85 | 90

(i L\.{ bto |

Deletion from aB+ Tree

Final tree

o] [[|
Pl T T[]
[19]eo] T] [100]120 140]

=L T L]

P

10 [15] 18 19 [20 [50 |60‘65‘ ‘ ||80‘85‘90‘ |

DLk LT

it

