Lecture 16: Data Storage

Wednesday, November 6, 2006

Outline

Data Storage

* The memory hierarchy — 11.2
* Disks—11.3

* Merge sort — 11.4

The Memory Hierarchy
Main Memory Disk Tape
*Volatile *5-10 MB/S * 1.5 MB/S transfer rate
elimited address tzralnsmlssmn rates .« 280 GB typical
spaces *2-10GB storage capacity
« expensive * average time to * Only sequential access
- average access access a block: * Not for operational

time: 10-15 msecs. data

* Need to consider
seek, rotation,
transfer times.

« Keep records “close”

to each other.

10-100 nanoseconds

Cache:
access time 10 nano’s

Main Memory

* Fastest, most expensive

Today: 512MB are common on PCs

* Many databases could fit in memory
— New industry trend: Main Memory Database
— E.g TimesTen, DataBlitz

* Main issue is volatility

— Still need to store on disk

Secondary Storage

* Disks

 Slower, cheaper than main memory
* Persistent !!!

+ Used with a main memory buffer

Buffer Management in a DBMS

Page Requests from Higher Levels

BUFFER POOL
disk page
/\44
free frame
MAIN MEMORY <
DISK S—

choice of frame dictated
m by replacement policy
—
« Data must be in RAM for DBMS to operate on it!

« Table of <frame#, pageid> pairs is maintained.
* LRU is not always good. ¢

Buffer Manager

Manages buffer pool: the pool provides space for a limited
number of pages from disk.

Needs to decide on page replacement policy
* LRU
* Clock algorithm

Enables the higher levels of the DBMS to assume that the
needed data is in main memory.

Buffer Manager

Why not use the Operating System for the task??

- DBMS may be able to anticipate access patterns
- Hence, may also be able to perform prefetching
- DBMS needs the ability to force pages to disk.

Tertiary Storage

* Tapes or optical disks

+ Extremely slow: used for long term
archiving only

The Mechanics of Disk

Cylinder

Mechanical characteristics:

* Rotation speed (5400RPM)
* Number of platters (1-30)

* Number of tracks (<=10000) Sector
* Number of bytes/track(10°)

Arm moveme!

.

Arm assembly

Disk Access Characteristics

 Disk latency = time between when command is
issued and when data is in memory

+ Disk latency = seek time + rotational latency
— Seek time = time for the head to reach cylinder
* 10ms —40ms

— Rotational latency = time for the sector to rotate
« Rotation time = 10ms
« Average latency = 10ms/2

* Transfer time = typically 10MB/s
 Disks read/write one block at a time (typically 4kB)

Average Seek Time

Suppose we have N tracks, what is the
average seek time ?

+ Getting from cylinder x to y takes time [x-y|
ARSI

0y -y =

1w x2+(N—x)2
Gt
1 N' N N

Ydx =

—(—+
N6 6 3

The I/0O Model of Computation

* In main memory algorithms we care about
CPU time

* In databases time is dominated by I/O cost

* Assumption: cost is given only by I/O

» Consequence: need to redesign certain
algorithms

Will illustrate here with sorting

Sorting

« Illustrates the difference in algorithm design
when your data is not in main memory:
— Problem: sort 1Gb of data with 1Mb of RAM.
* Arises in many places in database systems:
— Data requested in sorted order (ORDER BY)
— Needed for grouping operations
— First step in sort-merge join algorithm
— Duplicate removal
— Bulk loading of B+-tree indexes.

2-Way Merge-sort:
Requires 3 Buffers
* Pass 1: Read a page, sort it, write it.
— only one buffer page is used
e Pass 2,3, ..., etc.:

Two-Way External Merge Sort
(34 [62] [sd] [87] [56] [aa] [2] Input file

» Each pass we read + write ASS 0

P.
each page in file. (13] [2] Il 1pageruns

PASS 1
N pages in the file => the E 2-page runs
number of passes lagl [os] (58
Ty

Vg PASS 2
= ’—logz N1 +1 % m
! 4-page runs
+ So total cost is: [3.5]
lag] Ls]

2N([1og, N+1) s
Improvement: start with
larger runs

Sort 1GB with IMB memory|
in 10 passes

— three buffer pages used.
| INPUT 1
oo
r‘ INPUT 2
Disk a’f&::e”m” Disk
Can We Do Better ?

* We have more main memory
» Should use it to improve performance

Cost Model for Our Analysis

* B: Block size

* M: Size of main memory

* N: Number of records in the file
* R: Size of one record

8-page runs|

External Merge-Sort

* Phase one: load M bytes in memory, sort
— Result: runs of length M/R records

M/R records

Disk

Phase Two

e Merge M/B — 1 runs into a new run

* Result: runs have now M/R (M/B — 1) records

| | »|Input 1
gz
o]

M bytes of main memory

20

Phase Three

* Merge M/B — 1 runs into a new run
* Result: runs have now M/R (M/B — 1)? records

L

| I
T mpu2
|| Input M/B

Disk

M bytes of main memo: Disk

Cost of External Merge Sort

* Number of passes: 1+ flog M/E—I|VNR /Mﬂ
+ Think differently
— Given B=4KB, M = 64MB, R =0.1KB
— Pass 1: runs of length M/R = 640000
« Have now sorted runs of 640000 records

— Pass 2: runs increase by a factor of M/B — 1 = 16000
« Have now sorted runs of 10,240,000,000 = 10! records

— Pass 3: runs increase by a factor of M/B — 1 = 16000
* Have now sorted runs of 10'* records
* Nobody has so much data !

* Can sort everything in 2 or 3 passes !

External Merge Sort

¢ The xsort tool in the XML toolkit sorts
using this algorithm

¢ Can sort 1GB of XML data in about 8
minutes

