
1

1

Lecture 03: SQL

Friday, October 4, 2002

2

Outline

• Unions, intersections, differences
(6.2.5, 6.4.2)

• Subqueries (6.3)

• Aggregations (6.4.3 – 6.4.6)

Hint for reading the textbook: read the entire chapter 6 !

Reading assignment from “SQL for Nerds”: chapter 4, “More
complex queries” (you will find it very useful for subqueries)

3

First Unintuitive SQLism

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

Looking for R ∩ (S ∪ T)

But what happens if T is empty?

4

Renaming Columns

HitachiHousehold$203.99MultiTouch

CanonPhotography$149.99SingleTouch

GizmoWorksGadgets$29.99Powergizmo

GizmoWorksGadgets$19.99Gizmo

ManufacturerCategoryPricePName

SELECT PnameASprodName, Price ASaskPrice
FROM Product
WHERE Price > 100

SELECT PnameASprodName, Price ASaskPrice
FROM Product
WHERE Price > 100

Product

$203.99MultiTouch

$149.99SingleTouch

askPriceprodName

Query with
renaming

5

Union, Intersection, Difference
(SELECT name
FROM Person
WHERE City=“Seattle”)

UNION

(SELECT name
FROM Person, Purchase
WHERE buyer=name AND store=“The Bon”)

(SELECT name
FROM Person
WHERE City=“Seattle”)

UNION

(SELECT name
FROM Person, Purchase
WHERE buyer=name AND store=“The Bon”)

Similarly, you can use INTERSECT and EXCEPT.
You must have the same attribute names (otherwise: rename). 6

(SELECT DISTINCT R.A
FROM R)
INTERSECT ((SELECT S.A FROM S)

UNION
(SELECT T.A FROM T))

(SELECT DISTINCT R.A
FROM R)
INTERSECT ((SELECT S.A FROM S)

UNION
(SELECT T.A FROM T))

2

7

Conserving Duplicates

(SELECT name
FROM Person
WHERE City=“Seattle”)

UNION ALL

(SELECT name
FROM Person, Purchase
WHERE buyer=name AND store=“The Bon”)

(SELECT name
FROM Person
WHERE City=“Seattle”)

UNION ALL

(SELECT name
FROM Person, Purchase
WHERE buyer=name AND store=“The Bon”)

8

Subqueries

A subquery producing a single value:

In this case, thesubquery returns one value.

If it returns more, it’s a run-time error.

SELECT Purchase.product
FROM Purchase
WHERE buyer =

(SELECT name
FROM Person
WHERE ssn = ‘123456789‘);

SELECT Purchase.product
FROM Purchase
WHERE buyer =

(SELECT name
FROM Person
WHERE ssn = ‘123456789‘);

9

Can say the same thing without a subquery:

This is equivalent to the previous one when the ssn is a key
and ‘123456789’ exists in the database;
otherwise they are different.

SELECT Purchase.product
FROM Purchase, Person
WHERE buyer = name AND ssn = ‘123456789‘

SELECT Purchase.product
FROM Purchase, Person
WHERE buyer = name AND ssn = ‘123456789‘

10

Subqueries Returning Relations

SELECT Company.name
FROM Company, Product
WHERE Company.name=Product.maker

AND Product.name IN
(SELECT Purchase.product
FROM Purchase
WHERE Purchase .buyer = ‘Joe Blow‘);

SELECT Company.name
FROM Company, Product
WHERE Company.name=Product.maker

AND Product.name IN
(SELECT Purchase.product
FROM Purchase
WHERE Purchase .buyer = ‘Joe Blow‘);

Find companies who manufacture products bought by Joe Blow.

Here thesubquery returns a set of values: no more
runtime errors.

11

Subqueries Returning Relations

SELECT Company.name
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

SELECT Company.name
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

Equivalent to:

Is this query equivalent to the previous one ?

Beware of duplicates !
12

Removing Duplicates

SELECT Company.name
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

SELECT Company.name
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

SELECT DISTINCT Company.name
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

SELECT DISTINCT Company.name
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

←Multiple copies

← Single copies

3

13

Removing Duplicates

SELECT DISTINCT Company.name
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

SELECT DISTINCT Company.name
FROM Company, Product, Purchase
WHERE Company.name= Product.maker

AND Product.name = Purchase.product
AND Purchase.buyer = ‘Joe Blow’

SELECT DISTINCT Company.name
FROM Company, Product
WHERE Company.name= Product.maker

AND Product.name IN
(SELECT Purchase.product
FROM Purchase
WHERE Purchase.buyer = ‘Joe Blow’)

SELECT DISTINCT Company.name
FROM Company, Product
WHERE Company.name= Product.maker

AND Product.name IN
(SELECT Purchase.product
FROM Purchase
WHERE Purchase.buyer = ‘Joe Blow’)

Now
they are
equivalent

14

Subqueries Returning Relations

SELECT name
FROM Product
WHERE price > ALL (SELECT price

FROM Purchase
WHERE maker=‘Gizmo-Works’)

SELECT name
FROM Product
WHERE price > ALL (SELECT price

FROM Purchase
WHERE maker=‘Gizmo-Works’)

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By “Gizmo-Works”

You can also use: s > ALL R
s > ANY R
EXISTS R

15

Question for Database Fans
and their Friends

• Can we express this query as a single SELECT-
FROM-WHERE query, without subqueries ?

• Hint: show that all SFW queries are monotone
(figure out what this means). A query with ALL
is not monotone

16

Conditions on Tuples

SELECT DISTINCT Company.name
FROM Company, Product
WHERE Company.name= Product.maker

AND (Product.name,price) IN
(SELECT Purchase.product, Purchase.price)
FROM Purchase
WHERE Purchase.buyer = “Joe Blow”);

SELECT DISTINCT Company.name
FROM Company, Product
WHERE Company.name= Product.maker

AND (Product.name,price) IN
(SELECT Purchase.product, Purchase.price)
FROM Purchase
WHERE Purchase.buyer = “Joe Blow”);

May not work in SQL server...

17

Correlated Queries

SELECT DISTINCT title
FROM Movie AS x
WHERE year <> ANY

(SELECT year
FROM Movie
WHERE title = x.title);

SELECT DISTINCT title
FROM Movie AS x
WHERE year <> ANY

(SELECT year
FROM Movie
WHERE title = x.title);

Movie (title, year, director, length)
Find movies whose title appears more than once.

Note (1) scope of variables (2) this can still be expressed as single SFW

correlation

18

Complex Correlated Query

Product (pname, price, category, maker, year)
• Find products (and their manufacturers) that are more expensive

than all products made by the same manufacturer before 1972

Powerful, but much harder to optimize !

SELECT DISTINCT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price

FROM Product AS y
WHERE x.maker = y.maker AND y.year < 1972);

SELECT DISTINCT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price

FROM Product AS y
WHERE x.maker = y.maker AND y.year < 1972);

4

19

Aggregation

SELECT Avg(price)
FROM Product
WHERE maker=“Toyota”

SELECT Avg(price)
FROM Product
WHERE maker=“Toyota”

SQL supports several aggregation operations:

SUM, MIN, MAX, AVG, COUNT

20

Aggregation: Count

SELECT Count(*)
FROM Product
WHERE year > 1995

SELECT Count(*)
FROM Product
WHERE year > 1995

Except COUNT, all aggregations apply to a single attribute

21

Aggregation: Count

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category) same as Count(*)
FROM Product
WHERE year > 1995

Better:

SELECT Count(DISTINCT category)
FROM Product
WHERE year > 1995

22

Simple Aggregation

Purchase(product, date, price, quantity)

Example 1: find total sales for the entire database

SELECT Sum(price * quantity)
FROM Purchase

Example 1’ : find total sales of bagels

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

23

Simple Aggregations

Product Date Price Quantity

Bagel 10/21 0.85 15

Banana 10/22 0.52 7

Banana 10/19 0.52 17

Bagel 10/20 0.85 20

Purchase

24

Grouping and Aggregation
Usually, we want aggregations on certain parts of the relation.

Purchase(product, date, price, quantity)

Example 2: find total sales after 9/1 per product.

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUPBY product

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUPBY product

Let’s see what this means…

5

25

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.
2. Group by the attributes in the GROUPBY
3. Select one tuple for every group (and apply aggregation)

SELECT can have (1) grouped attributes or (2) aggregates.

26

First compute the FROM-WHERE clauses
(date > “9/1”) then GROUP BY product:

Product Date Price Quantity

Banana 10/19 0.52 17

Banana 10/22 0.52 7

Bagel 10/20 0.85 20

Bagel 10/21 0.85 15

27

Then, aggregate

Product TotalSales

Bagel $29.75

Banana $12.48

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUPBY product

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUPBY product

28

GROUP BY v.s. Nested Quereis

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)
FROM Purchase y
WHERE x.product = y.product

AND y.date > ‘9/1’)
ASTotalSales

FROM Purchase x
WHERE x.date > “9/1”

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)
FROM Purchase y
WHERE x.product = y.product

AND y.date > ‘9/1’)
ASTotalSales

FROM Purchase x
WHERE x.date > “9/1”

29

Another Example

SELECT product, Sum(price * quantity) AS SumSales
Max(quantity) AS MaxQuantity

FROM Purchase
GROUP BY product

SELECT product, Sum(price * quantity) AS SumSales
Max(quantity) AS MaxQuantity

FROM Purchase
GROUP BY product

For every product, what is the total sales and max quantity sold?

Product SumSales MaxQuantity

Banana $12.48 17

Bagel $29.75 20

30

HAVING Clause

SELECT product, Sum(price * quantity)
FROM Purchase
WHERE date > “9/1”
GROUP BY product
HAVING Sum(quantity) > 30

SELECT product, Sum(price * quantity)
FROM Purchase
WHERE date > “9/1”
GROUP BY product
HAVING Sum(quantity) > 30

Same query, except that we consider only products that had
at least 100 buyers.

HAVING clause contains conditions on aggregates.

6

31

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates but NO OTHER
ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions

Why ?

32

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

Evaluation steps:
1. Compute the FROM-WHERE part, obtain a table with all attributes

in R1,…,Rn

2. Group by the attributes a1,…,ak

3. Compute the aggregates in C2 and keep only groups satisfying C2
4. Compute aggregates in S and return the result

33

Aggregation

Author(login,name)

Document(url, title)

Wrote(login,url)

Mentions(url,word)

34

• Find all authors who wrote at least 10
documents:

• Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
WHERE count(SELECT Wrote.url

FROM Wrote
WHERE Author.login=Wrote.login)

> 10

SELECT DISTINCT Author.name
FROM Author
WHERE count(SELECT Wrote.url

FROM Wrote
WHERE Author.login=Wrote.login)

> 10

This is
SQL by
a novice

35

• Find all authors who wrote at least 10
documents:

• Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

This is
SQL by
an expert

No need for DISTINCT: automatically from GROUP BY 36

• Find all authors who have a vocabulary over
10000 words:

SELECT Author.name
FROM Author, Wrote, Mentions
WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url
GROUP BY Author.name
HAVING count(distinct Mentions.word) > 10000

SELECT Author.name
FROM Author, Wrote, Mentions
WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url
GROUP BY Author.name
HAVING count(distinct Mentions.word) > 10000

Look carefully at the last two queries: you may
be tempted to write them as a nested queries,
but in SQL we write them best with GROUP BY

