CSE 444 Final -- Solutions

December 8, 2000

2:30pm – 4:20pm

Total number of points: 100

Total time: 1h 50’
a. We add two arrows:

The representation is not faithful.

b. We define the following tables in SQL: Employee, Manager, Purchase, Buys.

CREATE TABLE Employee (
 id CHAR(10) PRIMARY KEY,
 name VARCHAR(30),
 phone CHAR(10),
 ManagedBy CHAR(10) REFERENCES Manager(id)
);
CREATE TABLE Manager (
 id CHAR(10) PRIMARY KEY REFERENCES Empolyee(id),
 level INT
);
CREATE TABLE Purchase (
 purchaseNo CHAR(20) PRIMARY KEY,
 date DATE,
 amount INT
);
/* Buys could be integrated into Purchase */
CREATE TABLE Buys (
 purchase CHAR(20) PRIMARY KEY REFERENCES Purchase(purchaseNo),
 beneficiary CHAR(10) REFERENCES Employee(id),
 approves CHAR(10) REFERENCES Manager(id)
);

Note: the above script will not run on SQL Server because of the cyclic references between Employee and Manager. Instead we need to declare the foreign key ManagedBy by altering the table Employee. Also, level is a keyword. The following script runs on SQL Server.

CREATE TABLE Employee (
 id CHAR(10) PRIMARY KEY,
 name VARCHAR(30),
 phone CHAR(10),
 ManagedBy CHAR(10)
);
CREATE TABLE Manager (
 id CHAR(10) PRIMARY KEY REFERENCES Empolyee(id),
 thelevel INT
);
ALTER TABLE Employee ADD FOREIGN KEY (ManagedBy) REFERENCES Manager(id);
CREATE TABLE Purchase (
 purchaseNo CHAR(20) PRIMARY KEY,
 date DATETIME
);
CREATE TABLE Buys (
 purchase CHAR(20) PRIMARY KEY REFERENCES Purchase(purchaseNo),
 beneficiary CHAR(10) REFERENCES Employee(id),
 approves CHAR(10) REFERENCES Manager(id)
);

i. The Query is:

SELECT m.id, em.name, sum(p.amount)
FROM Manager m, Employee em, Employee e, Buys b, Purchase p
WHERE m.id=em.id
 AND e.name = “Smith”
 AND b.purchase = p.purchaseNo AND b.beneficiary=e.id ANDb.approves=m.id
GROUP BY m.id, em.name

ii. The query is:

SELECT DISTINCT p.purchaseNo, p.amount, e.name
FROM Purchase p, Buys b, Manager m, Empolyee e
WHERE p.purchase = b.purchase AND m.id = b.approves
 AND e.id = .beneficiary AND m.id = e.id

c. We run the following SQL queries in sequence:

INSERT INTO Manager(id, level)
 SELECT DISTINCT managedBy AS id, 1 AS level
 FROM Empolyee
 WHERE managedBy IS NOT NULL;

UPDATE Manager
SET level = 2
WHERE id IN (SELECT m2.id
 FROM Empolyee e, Manager m1, Manager m2
 WHERE e.id = m1.id AND e.managedBy = m2.id)

UPDATE Manager
SET level = 3
WHERE id IN (SELECT m3.id
 FROM Empolyee e, Manager m2, Manager m3
 WHERE e.id = m2.id AND e.managedBy = m3.id
 AND m2.level=2)

UPDATE Manager
SET level = 4
WHERE id IN (SELECT m4.id
 FROM Empolyee e, Manager m3, Manager m4
 WHERE e.id = m3.id AND e.managedBy = m4.id
 AND m3.level=3)

2. The answers are:

a. Yes, no, no:

i. Yes: if some attribute A is in X+, it means that X (A. But then we have Y (A, hence A is in Y+.

ii. No: Consider a relation R(A,B,C) with one fd: AB (C. Take X=A, Y=B. Then:
 X+ = A, Y+ = B, X+ (Y+ = AB, and (X (Y) +=(AB)+ = ABC

iii. No: Consider a relation R(A,B,C,D) with three fds: AB (D, AC (D. Take X=AB, Y=AC. Then X+ (Y+ = (ABD) ((ACD) = AD while (X (Y) + = A+ = A.

b. We compute X+ for every subset X of ABCD:
A+ = A (e.g. to see why B is not in A+, consider row 2 (A=1,B=1) and 4 (A=1,B=2))
B+=B
C+=C
D+=BCD
AB+=ABC (to see why D is not in AB+ consider the first two rows)
AC+=AC (to see why B is not in AC+ consider rows 1 and 4)
AD+=ABCD this is a minimal key
ABC+=ABC (to see why D is not in ABC+ consider the first two rows)
ABD+=ABCD (follows immediately from AD being a key)
ACD+=ABCD (follows immediately from AD being a key)
BCD+=BCD (to see why A is not in BCD+ consider rows 1 and 3)

There is only one minimal key: AD.
A basis for all functional dependencies is: D (BC, AB (C

3. The answers:
a. One record in Product takes 100 bytes and we can put 10 in a block, hence B(Product)=T(Product)/10=100,000
One record in Sales takes 50 bytes and we can put 20 in a block, hence B(Sales)=T(Sales)/20=100,000.

b. The cost of the plan is given by the cost of the join:
B(Product)+B(Product)B(Sales)/(M-1) = 100,000 + 100,000*100,000/100=100,100,000=(approx) 100M.

c.

d. Let Product’ and Sales’ be the left and right operand of the join respectively. We have:
T(Product’) = 10,000, record size = 20, records per block = 50
B(Product’) = 10,000/50 = 200
T(Sales’) = 40,000, record size = 16, records per block= 1000/16
B(Sales’) = 40,000/(1000/16) = 640 (approx)
It is more advantageous to use Product’ as outer relation. That is, the bock-nested loop will read data from Product, perform the projection and selection on the fly and store 100 blocks of records from Product’ in main memory. For each such set it will do a full scan of Sales, perform the selection and projection, then the join. Total cost:
B(Product) + B(Product’)/100 * B(Sales) = 100,000 + 200/100*100,000=100,000 + 200,000=300,000

4. The answer is:

a. Scanning the log from the end to the beginning we find:
Uncommitted transactions are: T6, T4, T3. These need to be run again by the application
Committed transactions are: T5, T1, T2
For recovery we scan the log from the bottom up to <start ckpt(T1,T2)> and undo the updates of transactions T6, T4, T3:
X = 1
Y = 1, 12
Z = 3, 5
U = 4, 9, 8
V = 5

b. Scanning the log from the end to the beginning we find:
Uncommitted transactions: T6, T5, T3. These need to be run again by the application.
Committed transactions: T4, T1, T2
For recovery: last successful checkpoint was <start ckpt(T1,T3)>. Need to start at the earliest between <start T1> and <start T3>: hence from the beginning of the log. Redo the updates of transactions T4, T1, T2:
X = 1, 4
Y = 2
Z = 3
U = 4, 8, 9
V = 5

ManagedBy

beneficiary

purchaseNo

approves

date

amount

level

phone

id

name

Purchase

Buys

Manager

Employee

id=pid

name, date

 quantity>100

Sales

Product

category=”gizmo”

name, id

pid, date

