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Formalizing Design



Which Channel to Use?
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Choosing Visual Encodings

Assume k visual encodings and n data attributes.
We would like to pick the “best” encoding among a
combinatorial set of possibilities of size (n+1)k

Principle of Consistency
The properties of the image (visual variables) should
match the properties of the data.

Principle of Importance Ordering
Encode the most important information in the most
effective way.



Bertin's Levels of Organization

Position

Size

Value

Texture
Color
Orientation

Shape

N|[O|Q
N|[O|Q
N| O a
NI o
\|
\|
\|

Nominal
Ordinal

Quantitative
Note:QcOCcN



Information in Hue and Lightness

Lightness (“value”) is perceived as ordered

. Encode ordinal variables (O)

HEE L)

. Encode continuous variables (Q) [not as well]

L a

Hue is normally perceived as unordered

. Encode nominal variables (N) using color



Design Criteria [IVackinlay 86]

Expressiveness

Effectiveness



Design Criteria [IVackinlay 86]

Expressiveness

A set of facts is expressible in a visual language if the
sentences (i.e. the visualizations) in the language
express all the facts in the set of data, and only the
facts in the data.

Effectiveness



Can not express the facts

A multivariate relation may be inexpressive in a
single horizontal dot plot because multiple records
are mapped to the same position.
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Expresses facts not in the data

Car

Accord
AMC Pacer
Audi 5000
BMW 320i
Champ
Chev Nova
Civic
Datsun 210
Datsun 810
Deville
Le Car
Linc Cont
Horizon
Mustang
Peugeot
Ssah 900 A length is interpreted as
Subaru

VW Dacner a quantitative value.

USA Japan Germany France Sweden Nation
Car nationality for 1979




Design Criteria [IVackinlay 86]

Expressiveness

A set of facts is expressible in a visual language if the
sentences (i.e. the visualizations) in the language
express all the facts in the set of data, and only the
facts in the data.

Effectiveness



Design Criteria [IVackinlay 86]

Expressiveness

A set of facts is expressible in a visual language if the
sentences (i.e. the visualizations) in the language
express all the facts in the set of data, and only the
facts in the data.

Effectiveness

A visualization is more effective than another
visualization if the information conveyed by one
visualization is more readily perceived than the
information in the other visualization.



Design Criteria Translated

Tell the truth and nothing but the truth
(don't lie, and don't lie by omission)

Use encodings that people decode better
(where better = faster and/or more accurate)



A Quick Experiment...



Compare area of circles



Compare length of bars



Compare area of circles



Compare length of bars




Accuracy of Visual Decoding
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Ranking Visual Encodings

Most accurate ! Position (common) scale
Position (non-aligned) scale

= Length
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Effectiveness Rankings [\ackinlay 86]

QUANTITATIVE

Position
Length
Angle

Slope
INCERRIVAS))
Volume
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Shape

ORDINAL

Position
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Length

INCERRIVAS))
Volume

NOMINAL

Position
Color Hue
Texture
Connection
Containment
Density (Value)
Color Sat
Shape
Length
Angle

Slope

Area

Volume

Conjectured effectiveness of encodings by data type



Effectiveness Rankings [\ackinlay 86]
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Effectiveness Rankings [\ackinlay 86]
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Effectiveness Rankings [\ackinlay 86]
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Mackinlay’s Design Algorithm

APT - “A Presentation Tool” 1986

User formally specifies data model and type
Input: ordered list of data variables to show

APT searches over design space

Test expressiveness of each visual encoding
Generate encodings that pass test

Rank by perceptual effectiveness criteria

Output the “most effective” visualization



APT

Automatically
generate chart
for car data

Input variables:
1. Price

2. Mileage

3. Repair

4. Weight

Car price for 1979
Car mileage for 1979
Repair record for 1977
Car weight for 1979




Limitations of APT

Does not cover many visualization techniques
Networks, hierarchies, maps, diagrams
Also: 3D structure, animation, illustration, ...

Does not consider interaction
Does not consider semantics / conventions

Assumes single visualization as output

Still an active area of research, e.g., the
Draco visualization design knowledge base



http://idl.cs.washington.edu/papers/draco/

Design Examples



Gene Expression Time-Series [Meyeretal 2011

Color Encoding Position Encoding
g4 g8 glé gl17 gl18 gl9 g20 g21 g22




Effectiveness Rankings
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Artery Visualization [Borkin et al 2017
Rainbow Palette Diverging Palette
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Effectiveness Rankings
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For the first time in at least 80 years, voters associate the Democrats more
with sociocultural issues than with class and economic solidarity

Main reasons people say they like the Democratic party (% of all reasons given)

30

They represent

the working class They stand up for
marginalised groups
% o They're good
on healthcare
N
10 -4

® They’re good on

M

1960 1970 1980 1990 2000 2010 2020

Source: FT analysis of American National Election Studies, based on Party Images in the American Electorate (Brewer, 2008)
FT graphic: John Burn-Murdoch / @jburnmurdoch
©OFT
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For the first time in at least 80 years, voters associate the Democrats more
with sociocultural issues than with class and economic solidarity

Main reasons people say they like the Democratic party (% of all reasons given)

30

They represent
the working class They stand up for

marginalised groups
20

e They're good
\ on healthcare

\.

® They're good on
’/ climate change

10

—
A

1960 1970 1980 1990 2000 2010 2020

Direct labels, rather than legend. (But y-axis units?)
Title and subtitle convey context and steer interpretation.



e They're good
on healthcare

—
® They're good on

/ climate change

Subtle outlines aid discrimination of line segments.



A Design Space
of Visual Encodings



Mapping Data to Visual Variables

Assign data fields (e.g., with N, O, Q types) to visual
channels (x, y, color, shape, size, ...) for a chosen
graphical mark type (point, bar, line, ...).

Additional concerns include choosing appropriate
encoding parameters (/og scale, sorting, ...) and
data transformations (bin, group, aggregate, ...).

These options define a large combinatorial space,
containing both useful and questionable charts!
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Expressive? B oo
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1D: Quantitative
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Expressive?
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Effective?

Raw Aggregate (Count)
(e N 7T
I T T T T 1 90
0 10 20 30 40 50 80
Mil Gallon
es_per_Gallo 70—
e———o P £ %]
I T T T T ] ° =°’ 50
0 10 20 30 40 50 5] 40 -
Miles_per_Gallon
30_
20_
R
I T T T TTTTTT T T T 117117 ° 10 4
1 2 10 20 100 o
Miles_per_Gallon w e w o w9 w QW
509 L - BIN(Miles_per_Gallon)
45 NHSS_Por_ualk
404 °OOOOOO°°g°2%NT
§ % e 2 R & 8 8 § ¢ g Qu 1?
& 30 ' BIN(Miles_per_Gallon) Oeo ()
|
5 25 40
%20- © 0000 0O O© COUNT
5 15 Miles_per Gallo e o o o
10 22888383898 | o8
5 BIN(Miles_per_Gallon)
0_.



https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/
https://vega.github.io/vega/examples/histogram/

Raw (with Layout Algorithm)

Treemap

Aggregate (Distributions)
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2D:
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Horsepower

2D: Quantitative x Quantitative
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240 240 —
0O o
220 220
. o}
200 200 -
180 © 180 O O
160 — g '8 O fo)
140 e N
120 §0] OO
=} (o O (o] °
100+ T 1204
ol g 100- O Q°
adl 80 O 9 ©
40 - o0 OO 0O o
204 07 e 00 0 O
0 T T T T 1 40 T T T T T T T T 1
0 10 20 30 40 50 w e v g 8d8 88 ¢ 8
Miles_per_Gallon Horsepower BIN(Miles_per_Gallon)
o 50
() 100
T T T 1 180
0 10 20 30 40 50 O
Miles_per_Gallon Ozoo
ONENSS e Horsepower
0 10 20 30 40 50 46 230

Miles_per_Gallon



Origin

2D: Nominal x Quantitative
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Raw (with Layout Algorithm)

Treemap Bubble Chart
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3D and Higher 2 I

Two variables [x, y]

Can map to 2D points.

Scatterplots, maps, ...

Third variable [Z]
Often use one of size, color,
opacity, shape, etc. Or, one

can further partition space.

What about 3D rendering?




wind Mmap [Viegas & Wattenberg]

January 13, 2025
12:21 pm EST

(time of forecast download)

top speed: 25.2 mph
average: 8.1 mph
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http://hint.fm/wind/

Administrivia



A1: Expository Visualization

Using the given climate data set...

Pick a guiding question, use it to title your vis.
Design a static visualization for that question.

You are free to use any visualization tool.

Deliverables via Gradescope
Image of your visualization (PNG or JPG format)

Short description + design rationale (< 4 paragraphs)

Due by EOD, Tue January 16.



Tableau Tutorial

Tableau is a graphical tool for creating

visualizations. It can be valuable for rapid
exploration and prototyping, even if you
ultimately plan to code your own visualization.

Friday, January 16, 4pm
On Zoom (see Ed for link)
Recording will be posted afterward

Led by Shaan and Jiawen



Multidimensional Data



Visual Encoding Channels
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Example: Coffee Sales

Sales figures for a fictional coffee chain

Sales Q-Ratio
Profit Q-Ratio
Marketing Q-Ratio

Product Type N {Coffee, Espresso, Herbal Tea, Tea}
Market N {Central, East, South, West}



Filters
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($400)
p Encode “Sales” (Q) and
— “Profit” (Q) using Position

S0 $100 $200 $300 $400 $500 $600 $700 $800 $900
Sales




Filters
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Filters
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Filters
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4+ South v | 1 |
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Trellis Plots

Market

Central

(S500)

S0  S200 $400 $600 $800 S0  S200 5400 $600 $800 S0  S200 $400 $600 $800 S0  S200 $400 $600
Sales Sales Sales Sales

A trellis plot subdivides space to enable
comparison across multiple plots.

Typically nominal or ordinal variables are used as
dimensions for subdivision.



Small Multiples

[MacEachren ‘95, Figure 2.11, p. 38]



Small Multiples

alfisol entisol histosol

1, 153, L3

inceptisol mollisol ultisol

[MacEachren ‘95, Figure 2.11, p. 38]




Scatterplot Matrix (SPLOM)

Scatter plots
for pairwise
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Parallel Coordinates



Parallel Coordinates [Insclberg]

cylinders displacement horsepower acceleration {0-60 mph} mileage
- -

2231 hp 28 48 mpog



https://syntagmatic.github.io/parallel-coordinates/examples/brushing.html

Parallel Coordinates [Insclberg]

Visualize up to ~two dozen dimensions at once
1. Draw parallel axes for each variable
2. For each tuple, connect points on each axis

Between adjacent axes: line crossings imply neg.
correlation, shared slopes imply pos. correlation.

Full plot can be cluttered. Interactive selection can
be used to assess multivariate relationships.

Highly sensitive to axis scale and ordering.

Expertise required to use effectively!



Scales & Axes



Scale Transforms

f:D—R

A scale is a function that maps a domain D of
data values to a range R of visual values.

Example ranges: x-position, color, size, angle
Scales are the workhorses of visual encoding!

We can modify domains, ranges, transforms (log,
etc.), padding, and more...



Positional Scales R = pixels

Continuous / Quantitative

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8.000 9,000 10.000 | I n e a r

fole
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Discrete / Ordinal
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Color Scales R = colors

Discrete / Categorical

. Alpha . Beta ‘ Gamma Delta . Epsilon 2t ordinal

Continuous / Quantitative

sequential
0 10 20 30 40 50 60 70 80 90 100 d IVerg In g

Discretized / Binned Quantitative
_ _ quantize

-60 -20 20 60



Include Zero in Axis Scale?

$20.000,000

|
|
|

|
' '
$19,500,000

Government payrolls in 1937 [How To Lie With Statistics. Huff]



Include Zero in Axis Scale?

CONCENTRATION (PPM)
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Yearly CO; concentrations [Cleveland 85]



Include Zero in Axis Scale?

Kristy
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Compare Kay
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Axis Tick Mark Selection

36 T
8 9 10 11 12 13 14 15 8 10 12

What are some properties of “good” tick marks?



Axis Tick Mark Selection

40

10 10 368 9 10 11 12 13 14 15 8 10 12
(a) Heckbert (b) R’s pretty (c) Wilkinson (d) Extended

Simplicity - numbers are multiples of 10, 5, 2
Coverage - ticks near the ends of the data
Density - not too many, nor too few
Legibility - whitespace, horizontal text, size



How to Scale the Axis?
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One Option: Clip Outliers
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Clearly Mark Scale Breaks

Violates Expressiveness Principle!
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Poor scale break [Cleveland 85] Well-marked scale break [Cleveland 85]



cale Break vs. Log Scale
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Scale Break vs. Log Scale

POPULATION (THOUSANDS)
EDINBURGH

STOCKHOLM
FLORENCE
GENDA |-+
TURIN
WARSAW
COPENHAGEN
USBON |-
PALERMO
MADHID
BERLIN
ROME
PETERSBURGH |- -
VENICE
DUBLIN
AMSTERDAM
MOSCOW
VIENNA |-
NAPLES
PARIS oo
CONSTANTINCPLE
LONDON

POPULATION (THOUSANDS)

LOG BASE 2 POPULATION (LOG THOUSANDS)

Both increase visual resolution

Scale break: difficult to compare (cognitive — not perceptual — work)
Log scale: direct comparison of all data



Logarithms turn multiplication
into addition.

log(x y) = log(x) + log(y)

Equal steps on a log scale
correspond to equal changes to
a multiplicative scale factor.



Linear Scale vs. Log Scale

MICRISOFT CP

Linear Scale

Log Sca I e ; . MICROSOFT CP




Linear Scale vs. Log Scale

MICRISOFT CP

Linear Scale
Absolute change

Log Sca I e ; . MICROSOFT CP

Small fluctuations

Percent change
d(10,30) > d(30,60)




Bending the Curve

Logarithmic scales can emphasize the rate of change in a way that linear scales do not. Italy seems to be slowing the coronavirus
infection rate, while the number of cases in the United States continues to double every few days.

45,000 — 100,000 —

Cases  Coronavirus cases in Italy and the U.S. Caseés  The same data
Plotted on a linear scale Plotted on a logarithmic scale

10,000 —

Exponential
Growth

O|IIIIIITIII|IIIlllITllllllTTIT] 1Illllllll‘lI]TIIITTIIIIIIIIIIII

Feb. March March Feb. March March
18 1 19 18 1 19

By The New York Times | Data from Worldometer



https://www.nytimes.com/2020/03/20/health/coronavirus-data-logarithm-chart.html

When To Apply a Log Scale?

Address data skew (e.g., long tails, outliers)

Enables comparison within and across multiple
orders of magnitude.

Focus on multiplicative factors (not additive)
Recall that the logarithm transforms X to +!
Percentage change, not linear difference.

Constraint: positive, non-zero values

Constraint: audience familiarity?



Visual Encoding Design

Use expressive and effective encodings
Reduce the problem space

Avoid over-encoding

Use space and small multiples intelligently
Use interaction to generate relevant views

Rarely does a single visualization answer all
questions. Instead, the ability to generate
appropriate visualizations quickly is critical!



About the design process...

Visualization draws upon both science and art!

Principles like expressiveness & effectiveness are
not hard-and-fast rules, but can assist us to guide
the process and articulate alternatives.

They can lead us to think more deeply about our
design rationale and prompt us to reflect.

It helps to know “the rules” in order to wisely
bend (or break) them at the right times!



