
CSE 442 - Data Visualization

Visualization Tools, Part 2

Jeffrey Heer University of Washington

Visualization Tools

Chart Typologies
Excel, Google Charts

Visual Analysis Grammars
ggplot2, Observable Plot, Vega-Lite

Visualization Libraries
Matplotlib, D3, Vega

Component Architectures
VTK, Prefuse

Graphics & Event APIs
Processing, OpenGL, Java2DEa

se
-o

f-U
se

Expressiveness

Chart Typologies
Excel, Google Charts

Visual Analysis Grammars
ggplot2, Observable Plot, Vega-Lite

Visualization Libraries
Matplotlib, D3, Vega

Component Architectures
VTK, Prefuse

Graphics & Event APIs
Processing, OpenGL, Java2DEa

se
-o

f-U
se

Expressiveness

Grammar Building Blocks

Data	 Input data to visualize

Transforms	 Filter, aggregate, stats, layout

Scales	 Map data values to visual values

Guides	 Axes & legends to visualize scales

Marks	 Data-representative graphics

Area Rect Symbol Line Arc

Text

Chart Typologies
Excel, Google Charts

Visual Analysis Grammars
ggplot2, Observable Plot, Vega-Lite

Visualization Libraries
Matplotlib, D3, Vega

Component Architectures
VTK, Prefuse

Graphics & Event APIs
Processing, OpenGL, Java2DEa

se
-o

f-U
se

Expressiveness

Facilitate rapid exploration
with concise specifications
by omitting low-level details.

Infer sensible defaults and
customize by overriding defaults.

Chart Typologies
Excel, Google Charts

Visual Analysis Grammars
ggplot2, Observable Plot, Vega-Lite

Visualization Libraries
Matplotlib, D3, Vega

Component Architectures
VTK, Prefuse

Graphics & Event APIs
Processing, OpenGL, Java2DEa

se
-o

f-U
se

Expressiveness

Facilitate rapid exploration
with concise specifications
by omitting low-level details.

Infer sensible defaults and
customize by overriding defaults.

Chart Typologies
Excel, Google Charts

Visual Analysis Grammars
ggplot2, Observable Plot, Vega-Lite

Visualization Libraries
Matplotlib, D3, Vega

Component Architectures
VTK, Prefuse

Graphics & Event APIs
Processing, OpenGL, Java2DEa

se
-o

f-U
se

Expressiveness

Offer fine-grained control for
composing interactive graphics.

But require verbose specifications
and technical expertise.

d3.js Data-Driven Documents

Mike Bostock, Vadim Ogievetsky, Jeffrey Heer [TVCG 2011]

Jason Davies (d3-geo, 2011—13), Philippe Rivière (2016—)

1. A collection of reusable visualization utilities

2. A tool for updating the browser’s Document
Object Model (DOM) in response to input data

What is D3?

1. A collection of reusable visualization utilities

Data: d3.csv, d3.json, …
Scales: d3.scaleLinear, d3.scaleLog, …
Projections: d3.geoPath, d3.geoMercator, …
Layout: d3.tree, d3.treemap, d3.force, …
Interaction: d3.brush, d3.zoom, …

2. A tool for updating the browser’s Document
Object Model (DOM) in response to input data

What is D3?

1. A collection of reusable visualization utilities

2. A tool for updating the browser’s Document
Object Model (DOM) in response to input data

Select: query DOM content
Join: bind input data to DOM elements
Update: set DOM element properties
Transition: animate changes over time

What is D3?

Enable highly custom visualization design

Support animation and dynamic displays

Support rich and varied interactions

Interoperate via web standards (HTML, SVG, CSS)

Avoid artificial limits. If a browser can do it, D3
should be able to take advantage of it.

Why D3?

"the authors have undeniably helped to bring data
visualization to the mainstream. [D3] is a
cornerstone contribution to this conference
specifically and more generally to the success of our
field as a whole"

IEEE VIS 2021 Test of Time Award

Why D3?

D3 “slingshotted the field into growth,
diversification and creativity that has been
unprecedented” and “changed how millions of data
visualizations are created across newsrooms,
websites, and personal portfolios”

Information is Beautiful 2022 Test of Time Award

Why D3?

“Use D3 if you think it’s perfectly normal to write a
hundred lines of code for a bar chart.”

Amanda Cox, Former Graphics Editor, NY Times

Why D3?

https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html

The core abstraction in D3 is a selection.

D3 Selections

The core abstraction in D3 is a selection.
// Add and configure an SVG element (<svg width=“500” height=“300”>)

svg = d3.append(“svg”) // add new SVG to page body
 .attr(“width”, 500) // set SVG width to 500px
 .attr(“height”, 300); // set SVG height to 300px

D3 Selections

Data DOM

Data DOM
<svg width=“500” …>

</svg>

svg = d3.append(“svg”)
 .attr(“width”, 500)
 .attr(“height”, 300);

The core abstraction in D3 is a selection.
// Add and configure an SVG element (<svg width=“500” height=“300”>)

svg = d3.append(“svg”) // add new SVG to page body
 .attr(“width”, 500) // set SVG width to 500px
 .attr(“height”, 300); // set SVG height to 300px

// Select & update existing rectangles contained in the SVG element

svg.selectAll(“rect”) // select all SVG rectangles
 .attr(“width”, 100) // set rect widths to 100px
 .style(“fill”, “steelblue”); // set rect fill colors

D3 Selections

Data DOM
<svg width=“500” …>

</svg>

Data DOM
<svg width=“500” …>

</svg>

svg.selectAll(“rect”) ???

Data DOM
<svg width=“500” …>
 <rect ..></rect>
 <rect ..></rect>
 <rect ..></rect>
 <rect ..></rect>
 <rect ..></rect>
</svg>

Data DOM

svg.selectAll(“rect”)

<svg width=“500” …>
 <rect … />
 <rect … />
 <rect … />
 <rect … />
 <rect … />
</svg>

Data DOM

svg.selectAll(“rect”)
 .attr(“width”, 100)
 .style(“fill”, “steelblue”)

<svg width=“500” …>
 <rect width=“100”
 style=“fill: steelblue;”
 />
 <rect width=“100
 style=“fill: steelblue;”
 />
 <rect width=“100
 style=“fill: steelblue;”

Selections can bind data and DOM elements.
values = [{…}, {…}, {…}, …]; // input data as JS objects

Data Binding

Selections can bind data and DOM elements.
values = [{…}, {…}, {…}, …]; // input data as JS objects
// Select SVG rectangles and bind them to data values.

bars = svg.selectAll(“rect.bars”).data(values);

Data Binding

Data DOM
<svg width=500 …>

</svg>

values = [
 { cat: “a”, value: 5 },
 { cat: “b”, value: 7 },
 { cat: “c”, value: 3 },
 { cat: “d”, value: 4 },
 { cat: “e”, value: 6 }
];

Data DOM
<svg width=500 …>

</svg>

values = [
 { cat: “a”, value: 5 },
 { cat: “b”, value: 7 },
 { cat: “c”, value: 3 },
 { cat: “d”, value: 4 },
 { cat: “e”, value: 6 }
];

? ? ? ? ?

bars = svg.selectAll(“rect”) .data(values)

Data DOM
<svg width=500 …>

</svg>

values = [
 { cat: “a”, value: 5 },
 { cat: “b”, value: 7 },
 { cat: “c”, value: 3 },
 { cat: “d”, value: 4 },
 { cat: “e”, value: 6 }
];

?
?
?
?
?

bars = svg.selectAll(“rect”) .data(values)

Selections can bind data and DOM elements.
values = [{…}, {…}, {…}, …]; // input data as JS objects
// Select SVG rectangles and bind them to data values.

bars = svg.selectAll(“rect.bars”).data(values);
// What if the DOM elements don’t exist yet? The enter set represents data
// values that do not yet have matching DOM elements.

bars.enter().append(“rect”).attr(“class”, “bars”);

Data Binding

Data DOM
<svg width=500 …>

</svg>

values = [
 { cat: “a”, value: 5 },
 { cat: “b”, value: 7 },
 { cat: “c”, value: 3 },
 { cat: “d”, value: 4 },
 { cat: “e”, value: 6 }
];

?
?
?
?
?

bars = svg.selectAll(“rect”) .data(values)

Data DOM
<svg width=500 …>
 <rect />
 <rect />
 <rect />
 <rect />
 <rect />
</svg>

values = [
 { cat: “a”, value: 5 },
 { cat: “b”, value: 7 },
 { cat: “c”, value: 3 },
 { cat: “d”, value: 4 },
 { cat: “e”, value: 6 }
];

bars.enter().append(“rect”)

Data DOM
<svg width=500 …>
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
</svg>

values = [
 { cat: “a”, value: 5 },
 { cat: “b”, value: 7 },
 { cat: “c”, value: 3 },
 { cat: “d”, value: 4 },
 { cat: “e”, value: 6 }
];

bars.enter().append(“rect”).attr(“class”, “bars”)

Data DOM
<svg width=500 …>
 <rect x=“…” />
 <rect x=“…” />
 <rect x=“…” />
 <rect x=“…” />
 <rect x=“…” />
</svg>

values = [
 { cat: “a”, value: 5 },
 { cat: “b”, value: 7 },
 { cat: “c”, value: 3 },
 { cat: “d”, value: 4 },
 { cat: “e”, value: 6 }
];

bars.enter().append(“rect”)
.attr(“x”, d => xscale(d.cat))

Data DOM
<svg width=500 …>
 <rect height=“…” />
 <rect height=“…” />
 <rect height=“…” />
 <rect height=“…” />
 <rect height=“…” />
</svg>

values = [
 { cat: “a”, value: 5 },
 { cat: “b”, value: 7 },
 { cat: “c”, value: 3 },
 { cat: “d”, value: 4 },
 { cat: “e”, value: 6 }
];

bars.enter().append(“rect”)
.attr(“height”, d => yscale(d.value))

Selections can bind data and DOM elements.
values = [{…}, {…}, {…}, …]; // input data as JS objects
// Select SVG rectangles and bind them to data values.

bars = svg.selectAll(“rect.bars”).data(values);
// What if the DOM elements don’t exist yet? The enter set represents data
// values that do not yet have matching DOM elements.

bars.enter().append(“rect”).attr(“class”, “bars”);
// What if data values are removed? The exit set is a selection of existing
// DOM elements who no longer have matching data values.

bars.exit().remove();

Data Binding

Data DOM
<svg width=500 …>
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
</svg>

values = [
 { cat: “a”, value: 5 },
 { cat: “b”, value: 7 },
 { cat: “c”, value: 3 },
 { cat: “d”, value: 4 },
 { cat: “e”, value: 6 }
];

Data DOM
<svg width=500 …>
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
</svg>

values = [
 { cat: “a”, value: 5 },
 { cat: “b”, value: 7 },
 { cat: “c”, value: 3 },
 { cat: “d”, value: 4 },
 { cat: “e”, value: 6 }
];

values.filter(d => ![‘b’, ‘d’].includes(d.cat))

Data DOM
<svg width=500 …>
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
</svg>

values = [
 { cat: “a”, value: 5 },

 { cat: “c”, value: 3 },

 { cat: “e”, value: 6 }
];

bars = svg.selectAll(“rect.bars”).data(values)

Data DOM
<svg width=500 …>
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
</svg>

values = [
 { cat: “a”, value: 5 },

 { cat: “c”, value: 3 },

 { cat: “e”, value: 6 }
];

bars.exit()

Data DOM
<svg width=500 …>
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
</svg>

values = [
 { cat: “a”, value: 5 },

 { cat: “c”, value: 3 },

 { cat: “e”, value: 6 }
];

bars.exit().remove()

Data DOM
<svg width=500 …>
 <rect class=“bars” />
 <rect class=“bars” />
 <rect class=“bars” />
</svg>

values = [
 { cat: “a”, value: 5 },
 { cat: “c”, value: 3 },
 { cat: “e”, value: 6 }
];

The Data Join

ENTER
Data values

without matching
DOM elements.

EXIT
DOM elements
whose bound data
has gone “stale”.

UPDATE
Existing DOM

elements, bound
to valid data.

DATA VALUES ELEMENTS

https://bost.ocks.org/mike/selection/#key

The Data Join var s = d3.selectAll(...).data(...)

ENTER
Data values

without matching
DOM elements.

s.enter().append(...)

EXIT
DOM elements
whose bound data
has gone “stale”.
s.exit()

UPDATE
Existing DOM

elements, bound
to valid data.

s

DATA VALUES ELEMENTS

https://bost.ocks.org/mike/selection/#key

Selections can bind data and DOM elements.
values = [{…}, {…}, {…}, …]; // input data as JS objects
// Select SVG rectangles and bind them to data values.

bars = svg.selectAll(“rect.bars”).data(values)
.join(

enter => enter.append("rect"), // create new
update => update, // update current
exit => exit.remove() // remove outdated

)

Data Binding

Data Parsing / Formatting (JSON, CSV, …)
Shape Helpers (arcs, curves, areas, symbols, …)
Scale Transforms (linear, log, ordinal, …)
Color Spaces (RGB, HSL, LAB, …)
Animated Transitions (tweening, easing, …)
Geographic Mapping (projections, clipping, …)
Layout Algorithms (stack, pie, force, trees, …)
Interactive Behaviors (brush, zoom, drag, …)

Many of these correspond to future lecture topics!

D3 Modules

Administrivia

Design two static visualizations for a dataset:
1. An earnest visualization that faithfully conveys the data
2. A deceptive visualization that tries to mislead viewers

Your two visualizations may address different questions.

Try to design a deceptive visualization that appears to be
earnest: can you trick your classmates and course staff?

You are free to choose your own dataset, but we have also
provided some preselected datasets for you.

Submit two images and a brief write-up on Gradescope.

Due by Tue 1/27 EOD.

A2: Deceptive Visualization

DO
NE

You will be assigned two peer W2 submissions to review.
For each:

• Try to determine which is earnest and which is deceptive

• Share a rationale for how you made this determination

• Share feedback using the “I Like / I Wish / What If” rubric

Assigned reviews will be posted to a A2 Peer Review thread
on Ed, along with a link to a Google Form. You should
submit two forms: one for each A2 peer review.

Due by Tue 2/3 EOD.

A2: Peer Reviews

I LIKE…
Praise for design ideas and/or well-executed implementation details.
Example: "I like the navigation through time via the slider; the patterns
observed as one moves forward are compelling!”

I WISH…
Constructive statements on how the design might be improved or further
refined. Example: "I wish moving the slider caused the visualization to update
immediately, rather than the current lag."

WHAT IF?
Suggest alternative design directions, or even wacky half-baked ideas.
Example: "What if we got rid of the slider and enabled direct manipulation
navigation by dragging data points directly?"

I Like… / I Wish… / What If?

Create an interactive visualization in a team of 1-3
people. Choose a dataset and a driving question,
develop a visualization + interaction techniques, then
deploy your visualization on the web.

1. Form team, topic & data and start prototyping.

2. Complete implementation and submit to
Gradescope by EOD on Tuesday, Feb 17.

A3: Interactive Visualization

Form a team of 1-3 people for the A3 assignment.

Submit team composition using provided form.

If you’re looking for team mates, you can post on
Ed about your interests/skills/project ideas!

You may continue with the same team for the final
project, or form a new team later. It’s up to you.

Form a Project Team

Interactive. You must implement interaction methods!
However, this is not only selection / filtering / tooltips. Also
consider annotations or other narrative features to draw
attention and provide additional context

Web-based. D3/Vega-Lite are encouraged, but not
required. Deploy to web using GitLab pages.

Write-up. Provide design rationale.

Requirements

Start now. It will take longer than you think.

Keep it simple. Choose a minimal set of interactions that
enables users to explore and generate interesting insights.
Do not feel obligated to convey everything about the data:
focus on a compelling subset.

Promote engagement. How do your chosen interactions
reveal interesting observations?

Interactive Prototype Tips

D3 Tutorial
In-Class Thu 2/5
Led by Luke and Soham

Web Publishing Tutorial
Mon 2/9, 4:00–5:30pm (Zoom)
Publish online visualization via GitLab Pages
Led by Jason and Sebastin

Upcoming Tutorials

A Visualization Tool Stack

Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2, Vega-Lite

Visualization Grammars
D3.js, Vega

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Canvas, OpenGL, Processing

Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2, Vega-Lite

Visualization Grammars
D3.js, Vega

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Canvas, OpenGL, Processing

Programming
Toolkits

Charting
Tools

Declarative
Languages

Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2, Vega-Lite

Visualization Grammars
D3.js, Vega

Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Canvas, OpenGL, Processing

Programming
Toolkits

Declarative
Languages

Charting
Tools

Programming by describing what, not how

Separate specification (what you want) from
execution (how it should be computed)

In contrast to imperative programming, where
you must give explicit steps.

What is a Declarative Language?

Programming by describing what, not how

Separate specification (what you want) from
execution (how it should be computed)

In contrast to imperative programming, where
you must give explicit steps.
d3.selectAll("rect")
 .data(my_data)
 .join("rect")
 .attr("x", d => xscale(d.foo))
 .attr("y", d => yscale(d.bar))

What is a Declarative Language?

SELECT customer_id, customer_name,
 COUNT(order_id) as total
FROM customers
INNER JOIN orders ON
 customers.customer_id
 = orders.customer_id
GROUP BY customer_id, customer_name
HAVING COUNT(order_id) > 5
ORDER BY COUNT(order_id) DESC

HTML / CSS SQL

Table

Faster iteration, less code, larger user base?

Better visualization. Smart defaults.

Reuse. Write-once, then re-apply.

Performance. Optimization, scalability.

Portability. Multiple devices, renderers, inputs.

Programmatic generation.
Write programs which output visualizations.
Automated search & recommendation.

Why Declarative Languages?

Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2, Vega-Lite
Visualization Grammars

D3.js, Vega
Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D

Programming
Toolkits

Declarative
Languages

Charting
Tools

Chart Typologies
Excel, Many Eyes, Google Charts

Visual Analysis Grammars
VizQL, ggplot2, Vega-Lite
Visualization Grammars

D3.js, Vega
Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D

Programming
Toolkits

Declarative
Languages

Charting
Tools

?!

Programming
Toolkits

Visual Analysis Grammars
VizQL, ggplot2, Vega-Lite
Visualization Grammars

D3.js, Vega
Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D

Declarative
Languages

Programming
Toolkits

Graphical
Interfaces

Interactive Data Exploration
Tableau, Lyra, Voyager

Visual Analysis Grammars
VizQL, ggplot2, Vega-Lite
Visualization Grammars

D3.js, Vega
Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D

Declarative
Languages

idl.cs.washington.edu/projects/lyra

See also: Charticulator, Data Illustrator

https://idl.cs.washington.edu/projects/lyra/
https://idl.cs.washington.edu/projects/lyra/

Lyra A Visualization Design Environment

Driving Shifts into Reverse by Hannah Fairfield, NYTimes

Lyra A Visualization Design Environment

by William Playfair

Lyra A Visualization Design Environment

based on the Railway Timetable by E. J. Marey

Lyra A Visualization Design Environment

ZipScribble by Robert Kosara

Lyra A Visualization Design Environment

Napoleon’s March by Charles Minard

Voyager. Wongsuphasawat et al. InfoVis’15, CHI’17

http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/

Common exploration pitfalls:
Overlook data quality issues
Fixate on specific relationships
Plus many other biases…
[Heuer 1999, Kahneman 2011, …]

Voyager. Wongsuphasawat et al. InfoVis’15, CHI’17

http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/

Voyager. Wongsuphasawat et al. InfoVis’15, CHI’17

Key Idea: Augment manual exploration with
visualization recommendations sensitive to the user’s
current focus.

The goal is to support systematic consideration of the
data, without exacerbating false discovery.

To model a user’s search frontier, we enumerate related
Vega-Lite specifications, seeded by the user’s current
focus.

Candidate charts are pruned and ranked using models
of estimated perceptual effectiveness.

http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/

A Formal Design Space of Visualizations

[Kim et al. 2017]

ADD_COLOR

Remove
Color

Add Color

Enumerate Vega-Lite specifications and
transformations among them. Search the space

using logic programming methods.

Articulate Design Constraints

❌✅
“Quantitative axes should include a zero baseline”

When and how strongly should we apply this?
How to balance with other such constraints?

[Moritz et al. 2019]

Learn Design Trade-Offs from Data

👍 Positive
example

👎 Negative
example

[u1, u2, . . . , uk]

[v1, v2, . . . , vk]

arg maxw ∑
i ∈ 0...k

wi (ui − vi)

Learning Algorithm
Learning to Rank
with Linear SVM

Features
Violations of

Design Constraints

Training Data
Pairs of Ranked
Visualizations

w is the weight
vector of the soft

constraints

 : the number of violations
of constraint .

vi
i

800 1,000 1,200

New York

Seattle

0 400 800 1,200

New York

Seattle

800 1,000 1,200

New York

Seattle

0 400 800 1,200

New York

Seattle

Crookston
Duluth
Grand Rapids
Morris
University Farm
Waseca

19
31

19
32

0

10

20

30

40

50
Crookston
Duluth
Grand Rapids
Morris
University Farm
Waseca

19
31

19
32

0

10

20

30

40

50

Crookston
Duluth
Grand Rapids
Morris
University Farm
Waseca

19
31

19
32

0

10

20

30

40

50
Crookston
Duluth
Grand Rapids
Morris
University Farm
Waseca

19
31

19
32

0

10

20

30

40

50

<

[Moritz et al. 2019]

Voyager. Wongsuphasawat et al. InfoVis’15, CHI’17

Compared to other tools, over 4x more variable sets
seen, and over 2x more interacted with.

“related view suggestion accelerates exploration a lot.”

“I like that it shows me what fields to include in order to see
a specific graph. Otherwise, I have to do a lot of trial and
error and can't express what I wanted to see.”

“These related views are so good but it’s also spoiling that I
start thinking less. I’m not sure if that’s really a good thing.”

http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/
http://idl.cs.washington.edu/papers/voyager2/

Programming
Toolkits

Graphical
Interfaces

Interactive Data Exploration
Tableau, Lyra, Voyager

Visual Analysis Grammars
VizQL, ggplot2, Vega-Lite
Visualization Grammars

D3.js, Vega
Component Architectures
Prefuse, Flare, Improvise, VTK

Graphics APIs
Processing, OpenGL, Java2D

Declarative
Languages

