
CSE 442 - Data Visualization

Data Transformation

Jeffrey Heer University of Washington

Data Models
Data Tables & Transformations
Data Wrangling & Profiling
Visualizing Distributions
Dimensionality Reduction

Session Outline

Data Models

Data models are formal descriptions
Math: sets with operations on them
Example: integers with + and x operators

Conceptual models are mental constructions
Include semantics and support reasoning

Examples (data vs. conceptual)
1D floats vs. temperatures
3D vector of floats vs. spatial location

Data Models / Conceptual Models

Physical Types
Characterized by storage format
Characterized by machine operations
Example: bool, int32, float, double, string, …

Abstract Types
Provide descriptions of the data
May be characterized by methods / attributes
May be organized into a hierarchy
Example: plants, animals, metazoans, …

Types of Variables

1D (sets and sequences)
Temporal
2D (maps)
3D (shapes)
nD (relational)
Trees (hierarchies)
Networks (graphs)

Are there others? The eyes have it: A task by data type
taxonomy for information visualization
[Shneiderman 96]

Taxonomy of Data Types (?)

Nominal, Ordinal & Quantitative

N - Nominal (labels or categories)
 Fruits: apples, oranges, …

Nominal, Ordinal & Quantitative

N - Nominal (labels or categories)
 Fruits: apples, oranges, …

O - Ordered
 Quality of meat: Grade A, AA, AAA

Nominal, Ordinal & Quantitative

N - Nominal (labels or categories)
 Fruits: apples, oranges, …

O - Ordered
 Quality of meat: Grade A, AA, AAA

Q - Interval (location of zero arbitrary)
 Dates: Jan, 19, 2006; Location: (LAT 33.98, LONG -118.45)
 Only differences (i.e., intervals) may be compared

Nominal, Ordinal & Quantitative

N - Nominal (labels or categories)
 Fruits: apples, oranges, …

O - Ordered
 Quality of meat: Grade A, AA, AAA

Q - Interval (location of zero arbitrary)
 Dates: Jan, 19, 2006; Location: (LAT 33.98, LONG -118.45)
 Only differences (i.e., intervals) may be compared

Q - Ratio (zero fixed)
 Physical measurement: Length, Mass, Time duration, …
 Counts and amounts

Nominal, Ordinal & Quantitative

N - Nominal (labels or categories)
 Operations: =, ≠

O - Ordered
 Operations: =, ≠, <, >

Q - Interval (location of zero arbitrary)
 Operations: =, ≠, <, >, -
 Can measure distances or spans

Q - Ratio (zero fixed)
 Operations: =, ≠, <, >, -, %
 Can measure ratios or proportions

Nominal, Ordinal & Quantitative

Data Model
32.5, 54.0, -17.3, …
Floating point numbers

Conceptual Model
Temperature (°C)

Data Type
Burned vs. Not-Burned (N)
Hot, Warm, Cold (O)
Temperature Value (Q-interval)

From Data Model to N, O, Q

Dimensions (~ independent variables)
Often discrete variables describing data (N, O)
Categories, dates, binned quantities

Measures (~ dependent variables)
Data values that can be aggregated (Q)
Numbers to be analyzed
Aggregate as sum, count, avg, std. dev…

Not a strict distinction. The same variable may be
treated either way depending on the task.

Dimensions & Measures

Example: U.S. Census Data

People Count: # of people in group
Year: 1850 – 2000 (every decade)
Age: 0 – 90+
Sex: Male, Female
Marital Status: Single, Married, Divorced, …

Example: U.S. Census Data

People Count
Year
Age
Sex
Marital Status

2,348 data points

Example: U.S. Census

People Count
Year
Age
Sex
Marital Status

	 	 	 	 	 Q-Ratio
	 	 	 	 	 Q-Interval (O)
	 	 	 	 	 Q-Ratio (O)
	 	 	 	 	 N	
	 	 	 	 	 N

Census: N, O, Q-Interval, Q-Ratio?

People Count
Year
Age
Sex
Marital Status

	 	 	 	 	 Measure
	 	 	 	 	 Dimension
	 	 	 	 	 Depends!
	 	 	 	 	 Dimension
	 	 	 	 	 Dimension

Census: Dimension or Measure?

Census Data Demo
demo link: us-population-1850-2000

https://observablehq.com/@uwdata/us-population-1850-2000-json

Data Tables &
Transformations

Represent data as a table (or relation)
Each row (or tuple) represents a record
 Each record is a fixed-length tuple
Each column (or field) represents a variable
 Each field has a name and a data type
A table’s schema is the set of names and types
A database is a collection of tables (relations)

Relational Data Model

Operations on Data Tables: table(s) in, table out

Relational Algebra [Codd ’70] / SQL

Operations on Data Tables: table(s) in, table out
Project (select): select a set of columns
Filter (where): remove unwanted rows
Sort (order by): order records
Aggregate (group by, sum, min, max, …):

partition rows into groups + summarize
Combine (join, union, …):

integrate data from multiple tables

Relational Algebra [Codd ’70] / SQL

Project (select): select a set of columns
select day, stock

Relational Algebra [Codd ’70] / SQL

day stock price

10/3 AMZN 957.10

10/3 MSFT 74.26

10/4 AMZN 965.45

10/4 MSFT 74.69

day stock

10/3 AMZN

10/3 MSFT

10/4 AMZN

10/4 MSFT

Filter (where): remove unwanted rows
select * where price > 100

Relational Algebra [Codd ’70] / SQL

day stock price

10/3 AMZN 957.10

10/3 MSFT 74.26

10/4 AMZN 965.45

10/4 MSFT 74.69

day stock price

10/3 AMZN 957.10

10/4 AMZN 965.45

Sort (order by): order records
select * order by stock

Relational Algebra [Codd ’70] / SQL

day stock price

10/3 AMZN 957.10

10/3 MSFT 74.26

10/4 AMZN 965.45

10/4 MSFT 74.69

day stock price

10/3 AMZN 957.10

10/4 AMZN 965.45

10/3 MSFT 74.26

10/4 MSFT 74.69

Aggregate (group by, sum, min, max, …):
select stock, min(price) group by stock

Relational Algebra [Codd ’70] / SQL

day stock price

10/3 AMZN 957.10

10/3 MSFT 74.26

10/4 AMZN 965.45

10/4 MSFT 74.69

stock min(price)

AMZN 957.10

MSFT 74.26

Join (join) multiple tables together

Relational Algebra [Codd ’70] / SQL

day stock price

10/3 AMZN 957.10

10/3 MSFT 74.26

10/4 AMZN 965.45

10/4 MSFT 74.69

stock min
AMZN 957.10
MSFT 74.26

day stock price min

10/3 AMZN 957.10 957.10

10/3 MSFT 74.26 74.26

10/4 AMZN 965.45 957.10

10/4 MSFT 74.69 74.26

select t.day, t.stock, t.price, a.min
from table as t, aggregate as a
where t.stock = a.stock

Want to examine population by year and age?
Roll-up the data along the desired dimensions

SELECT year, age, sum(people)
FROM census
GROUP BY year, age

Dimensions Measure

Dimensions

Roll-Up and Drill-Down

Want to see the breakdown by marital status?
Drill-down into additional dimensions

SELECT year, age, marst, sum(people)
FROM census
GROUP BY year, age, marst

Roll-Up and Drill-Down

Ag
e

Marital Status

Si
ng

le

M
ar

rie
d

D
iv

or
ce

d

W
id

ow
ed

1970
1980

1990
2000

Year

0-19

20-39

40-59

60+

All Marital Status

All Ages

All Years

Sum along
Marital Status

Sum along Age

Sum along Year

Ag
e

Marital Status

Si
ng

le

M
ar

rie
d

D
iv

or
ce

d

W
id

ow
ed

1970
1980

1990
2000

Year

0-19

20-39

40-59

60+

All Marital Status

All Ages

All Years

Sum along
Marital Status

Sum along Age

Sum along Year

Roll-Up

Drill-Down

YEAR		 AGE	 	 MARST	 SEX	 PEOPLE
1850		 0	 	 0	 	 1	 1,483,789
1850		 5	 	 0	 	 1	 1,411,067
1860		 0	 	 0	 	 1	 2,120,846
1860		 5	 	 0	 	 1	 1,804,467
 . . .

AGE	 MARST	 SEX	 1850	 	 1860	 	 . . .
0		 0	 	 1	 1,483,789	 2,120,846	 . . .
5		 0	 	 1	 1,411,067	 1,804,467	 . . .
 . . .

Which format might we prefer? Why?

ORIGINAL

PIVOTED (or CROSS-TABULATION)

How do rows, columns, and tables match up with
observations, variables, and types? In “tidy” data:
1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

The advantage is that this provides a flexible starting point
for analysis, transformation, and visualization.

Our pivoted table variant was not “tidy”!

(This is a variant of normalized forms in DB theory)

Tidy Data [Wickham 2014]

https://en.wikipedia.org/wiki/First_normal_form

CSV: Comma-Separated Values (d3.csv)
year,age,marst,sex,people
1850,0,0,1,1483789
1850,5,0,1,1411067
...

Common Data Formats

CSV: Comma-Separated Values (d3.csv)
year,age,marst,sex,people
1850,0,0,1,1483789
1850,5,0,1,1411067
...

JSON: JavaScript Object Notation (d3.json)
[
 {"year":1850,"age":0,"marst":0,"sex":1,"people":1483789},
 {"year":1850,"age":5,"marst":0,"sex":1,"people":1411067},
 ...
]

Common Data Formats

CSV: Comma-Separated Values (d3.csv)
year,age,marst,sex,people
1850,0,0,1,1483789
1850,5,0,1,1411067
...

JSON: JavaScript Object Notation (d3.json)
[
 {"year":1850,"age":0,"marst":0,"sex":1,"people":1483789},
 {"year":1850,"age":5,"marst":0,"sex":1,"people":1411067},
 ...
]

Binary Formats: Arrow, Parquet, …

Common Data Formats

Data Wrangling

I spend more than half of my time
integrating, cleansing and transforming
data without doing any actual analysis.
Most of the time I’m lucky if I get to do
any “analysis” at all.

Anonymous Data Scientist
from our 2012 interview study

DataWrangler

Wrangler: Interactive Visual Specification of Data Transformation Scripts
Kandel et al. [CHI 2011]

http://homes.cs.washington.edu/~jheer/talks/pydata2017/#4

DataWrangler

Wrangler: Interactive Visual Specification of Data Transformation Scripts
Kandel et al. [CHI 2011]

http://homes.cs.washington.edu/~jheer/talks/pydata2017/#4

The first sign that a visualization is good is
that it shows you a problem in your data.
Every successful visualization that I've been
involved with has had this stage where you
realize, "Oh my God, this data is not what I
thought it would be!" So already, you've
discovered something.

Martin Wattenberg [ACM Queue ’09]

Intemperate
Infants! Marauding

Centenarians!
???

Berkeley		 	 	 |||||||||||||||||||||||||||||||
Cornell	 	 	 	 ||||
Harvard	 	 	 	 |||||||||
Harvard University		 	 |||||||
Stanford	 	 	 	 ||||||||||||||||||||
Stanford University	 	 ||||||||||
UC Berkeley	 	 	 |||||||||||||||||||||
UC Davis		 	 	 ||||||||||
University of California at Berkeley	 |||||||||||||||
University of California, Berkeley	 ||||||||||||||||||
University of California, Davis	 |||

Visualize Friends by School?

Missing Data	 	 no measurements, redacted, …?
Erroneous Values		 misspelling, outliers, …?
Type Conversion 		 e.g., zip code to lat-lon
Entity Resolution	 	 diff. values for the same thing?
Data Integration	 	 effort/errors when combining data

Anticipate problems with your data!

Data Quality Hurdles

Libraries
JavaScript: Arquero
Python: Pandas, Polars
R: dplyr

Databases
DuckDB + SQL queries

Graphical Tools
We’ll look at some of these next!

Data Wrangling Tools

Trifacta Wrangler (now part of Alteryx)

https://www.trifacta.com/start-wrangling/

AWS Glue DataBrew

https://aws.amazon.com/glue/features/databrew/

Tableau Prep

Deepnote

Observable Data Table Cells

Quak widget usable in Jupyter Notebooks

https://github.com/manzt/quak

Pandas Profiling

https://pandas-profiling.ydata.ai/examples/master/census/census_report.html

VisiData

https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/
https://www.visidata.org/install/

Visualizing Distributions

Strip Plot

Jittered Plot

Box Plot

Dot Plot

Distribution Visualizations

Histogram
bin size = 2

Density Plot
kde, σ = 0.5

Violin Plot
kde, σ = 0.5

Distribution Visualizations

Now in 2D! Heatmaps, Contours

https://vega.github.io/vega/examples/contour-plot/

Kernel Density Estimation (KDE)
Enables violin plots, heat maps, contour plots…

Kernel Density Estimation
For a set of input data points…

Kernel Density Estimation
Represent each point with a “kernel” distribution

Kernel Density Estimation
Sum the kernels to form a density estimate

Kernel Density Estimation
Sized by bandwidth (standard deviation)

