CSE 442 - Data Visualization

Color

Jeffrey Heer University of Washington

Purpose of Color

To label

To measure
To represent and imitate
To enliven and decorate
"Above all, do no harm."

- Edward Tufte

Topics

Perception of Color
Light, Visual system, Mental models

Color in Information Visualization
Categorical \& Quantitative encoding
Guidelines for color palette design

Perception of Color

What color is this?

What color is this?

"Yellow"

What color is this?

What color is this?

"Blue"

What color is this?

What color is this?

"Teal" ?

Perception of Color

Physicist's View

Light as electromagnetic waves

Wavelength
Visible spectrum is $370-730 \mathrm{~nm}$

Power or
"Relative luminance"

A Field Guide to Digital Color, M. Stone

Perception of Color

Retina

Simple Anatomy of the Retina, Helga Kolb

As light enters our retina...

LMS (Long, Middle, Short) Cones

Sensitive to different wavelengths

As light enters our retina...

LMS (Long, Middle, Short) Cones

Sensitive to different wavelengths
Integration with input stimulus

Effects of Retina Encoding

Spectra that stimulate the same LMS response are indistinguishable (a.k.a. "metamers").
"Tri-stimulus"
Computer displays
Digital scanners
Digital cameras

CIE XYZ Color Space

Standardized in 1931 to mathematically represent tri-stimulus response from cones on the retina.
"Standard observer" response curves

Stimulus

CIE Standard Observer

CIE XYZ
Integrate

$$
\begin{aligned}
& X=1 \\
& Y=1 \\
& Z=1
\end{aligned}
$$

Color Vision Deficiency (CVD)

Missing one or more cones or rods in retina.

Protanope

Normal Retina

Color Vision Simulators

Simulate color vision deficiencies

Browser plug-ins
Photoshop plug-ins, etc.

Deuteranope

Protanope

Tritanope

Perception of Color

Primary Colors

To paint "all colors":
Leonardo da Vinci, circa 1500 described in his notebooks a list of simple colors...

Yellow
Blue
Green
Red

Opponent Processing Theory

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

[Fairchild]

Opponent Processing Theory

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Opponent Processing Theory

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Experiments:

No reddish-green, no blueish-yellow
Color after images

CIE LAB and LUV Color Spaces

Standardized in 1976 to mathematically represent opponent processing theory.
Non-linear transformation of CIE XYZ

CIE LAB Color Space

Axes correspond to opponent signals

$$
\begin{aligned}
& \mathbf{L}^{*}=\text { Luminance } \\
& \mathbf{a}^{*}=\text { Red-green contrast } \\
& \mathbf{b}^{\star}=\text { Yellow-blue contrast }
\end{aligned}
$$

Much more perceptually uniform than sRGB!
Scaling of axes to represent "color distance" JND = Just noticeable difference (~2.3 units)

D3 + Vega include LAB color space support!

Perception of Color

Albert Munsell

Developed the first perceptual color system based on his experience as an artist (1905).

Hue, Value, and Chroma

Hue, Value and Chroma

Hue, Value and Chroma

Hue, Value and Chroma

Munsell Color System

Perceptually-based
Precisely reference a color
Intuitive dimensions
Look-up table (LUT)

Munsell Color System

Perceptual Brightness

Color palette

Perceptual Brightness

Color palette

HSL Lightness
(Photoshop)

Perceptual Brightness

Color palette

Luminance Y
(CIE XYZ)

Perceptual Brightness

Color palette

Munsell Value

Perceptual Brightness

Color palette

Munsell Value
L* (CIE LAB)

Perceptually-Uniform Color Space

Munsell colors in CIE LAB coordinates

Mark Fairchild

Perception of Color

Color Appearance

If we have a perceptually-uniform color space, can we predict how we perceive colors?
"In order to use color effectively it is necessary to recognize that it deceives continually."

- Josef Albers, Interaction of Color

Simultaneous Contrast

Simultaneous Contrast

 Inner \& outer rings are the same physical purple.
Bezold Effect

Color appearance depends on adjacent colors

Color Appearance Tutorial by Maureen Stone

Crispening

Perceived difference depends on background

Color Appearance Models, Fairchild

Perception of Color

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Initial study in 1969
Surveyed speakers from 20 languages
Literature from 69 languages

World Color Survey

World Color Survey

World Color Survey

Naming information from 2,616 speakers from 110 languages on 330 Munsell color chips

Results from WCS

Language \#19 (Camsa)
Mutual info $=0.939 /$ Contribution $=0.487$

Language \#24 (Chavacano)
Mutual info $=0.939 /$ Contribution $=0.513$

Results from WCS

Language H72 (Mixteco)
Mutual info $=0.942 /$ Contribution $=0.476$

Language \#98 (Tlapaneco)
Mutual info $=0.942 /$ Contribution $=0.524$

Universal (?) Basic Color Terms

Basic color terms recur across languages.

White \square Red

Pink
\square Grey
\square
Black

Green \square Orange
\square Blue
\square Purple

Evolution of Basic Color Terms

Proposed term evolution across languages.

Naming Effects Color Perception

Color name boundaries

Green Blue

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

500nm
600 nm
700 nm

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Icicle Tree with Rainbow Coloring

Color Naming Models [Heer \& Stone '12]

Model 3 million responses from XKCD survey
Bins in LAB space sized by saliency:
How much do people agree on color name?

Modeled by entropy of p(name | color)

Perception of Color

Designing Colormaps

Colormap Design Considerations

Perceptually distinguishable colors Value distance matches perceptual distance Colors and concepts properly align Aesthetically pleasing, intriguing Respect color vision deficiencies Should survive printing to black \& white Don't overwhelm people's capability!

Discrete (Binary, Categorical)

Symbol Legend

Alpha

Continuous (Sequential, Diverging, Cyclic)

| Gradient Legend | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Discretized Continuous

Discrete Gradient

\square

Categorical Color

Gray's Anatomy

Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries. (http://www.bartleby.com/107/illus520.html)

Allocation of the Radio Spectrum

http://www.ntia.doc.gov/osmhome/allochrt.html

Allocation of the Radio Spectrum

UNITED

STATES FREQUENCY
ALLOCATIONS
THE RADIO SPECTRUM
rado servces color Legeno
\square vexurce \square mimamur \square nossamorar

\square vemence \square viowar $\quad \square$ mencuro

\square menesmint \square marationt $\quad \square$ momianor

ACtivtr CODE
\square avomestruian
\square menvensertrouman
allocation usage designation
savas murs sacespea

Issues:

Too many colors
Hard to remember mapping
Colors not distinctive, some are very similar
Poor grouping: similar colors, different values
Labels cause clutter
Color surround effects
Colors interactions may not look good together

http://www.ntia.doc.gov/osmhome/allochrt.html

Palette Design \& Color Names

Minimize overlap and ambiguity of colors.

Color Name Distance										Salience	Name blue 62.9%
0.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.20	. 47	
1.00	0.00	1.00	0.97	1.00	1.00	1.00	1.00	0.96	1.00	. 90	orange 93.9\%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.90	0.99	. 67	green 79.8\%
1.00	0.97	1.00	0.00	1.00	0.95	0.99	1.00	1.00	1.00	. 66	red 80.4\%
0.98	1.00	1.00	1.00	0.00	0.96	0.91	0.97	1.00	0.99	. 47	purple 51.4\%
1.00	1.00	1.00	0.95	0.96	0.00	0.97	0.93	0.98	1.00	. 37	brown 54.0\%
1.00	1.00	1.00	0.99	0.91	0.97	0.00	1.00	1.00	1.00	. 58	pink 71.7%
1.00	1.00	1.00	1.00	0.97	0.93	1.00	0.00	1.00	1.00	. 67	grey 79.4%
1.00	0.96	0.90	1.00	1.00	0.98	1.00	1.00	0.00	1.00	. 18	yellow 31.2\%
0.20	1.00	0.99	1.00	0.99	1.00	1.00	1.00	1.00	0.00	. 25	blue 25.4%
Tableau-10								verage	0.97	. 52	

Palette Design \& Color Names

Minimize overlap and ambiguity of colors.

Color Name Distance										Salience	Name blue 50.5%
0.00	1.00	1.00	0.89	0.07	1.00	0.35	0.99	1.00	0.89	. 30	
1.00	0.00	0.99	1.00	1.00	0.92	1.00	0.84	0.98	0.99	. 21	red 27.8\%
1.00	0.99	0.00	1.00	0.98	1.00	1.00	1.00	0.17	1.00	. 34	green 36.8%
0.89	1.00	1.00	0.00	0.98	1.00	0.71	0.93	1.00	0.32	. 55	purple 67.3\%
0.07	1.00	0.98	0.98	0.00	1.00	0.36	1.00	0.97	0.95	. 20	blue 36.6\%
1.00	0.92	1.00	1.00	1.00	0.00	1.00	0.97	0.99	1.00	. 39	orange 51.9\%
0.35	1.00	1.00	0.71	0.36	1.00	0.00	0.95	0.92	0.42	. 13	blue 15.7\%
0.99	0.84	1.00	0.93	1.00	0.97	0.95	0.00	0.98	0.85	. 16	pink 29.4\%
1.00	0.98	0.17	1.00	0.97	0.99	0.92	0.98	0.00	0.97	. 12	green 21.7%
0.89	0.99	1.00	0.32	0.95	1.00	0.42	0.85	0.97	0.00	. 30	purple 23.9\%
Excel								verage	0.87	. 27	

Quantitative Color

Rainbow Color Maps

Be wary of naïve rainbows?

1. Naive rainbows are unfriendly to color blind viewers
2. Hues are not naturally ordered
3. Some colors are less effective at high spatial frequencies
4. People segment colors into classes -> perceptual banding

But rainbow helpful for inference?

Reda et al. '21: Color Nameability Predicts Inference Accuracy in Spatial Visualizations
Rainbow found ineffective for value comparison [Liu '18]...
...but color name salience found to improve performance on inference task of distinguishing distributions [Reda '21] Task matters!

Steps, rather than Gradients?

Classing Quantitative Data

Age-adjusted mortality rates for the United States.
Common option: break into 5 or 7 quantiles.

Classing Quantitative Data

1. Equal interval (arithmetic progression)
2. Quantiles (recommended)
3. Standard deviations
4. Clustering (Jenks' natural breaks / 1D K-Means) Minimize within group variance Maximize between group variance

Quantitative Color Encoding

Sequential color scale

Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Sequential Scales: Single-Hue

Ramp primarily in luminance, subtle hue difference

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Sequential Scales: Multi-Hue

Ramp luminance \& hue in perceptual color space Avoid contrasts subject to color vision deficiency!

Sequential Scales: Multi-Hue

The colormap in its glory

Moderate deuteranomaly

Complete deuteranopia

Moderate protanomaly

Complete protanopia

Viridis, https://bids.github.io/colormap/

Quantitative Color Encoding

Sequential color scale

Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Diverging color scale
Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Diverging Color Scheme

Designing Diverging Scales

Hue Transition
Carefully Handle Midpoint
Choose classes of values
Low, Average, High - Average should be gray
Critical Breakpoint
Defining value e.g., 0
Positive \& negative should use different hues
Extremes saturated, middle desaturated

Designing Diverging Scales

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Quantitative Color Encoding

Sequential color scale
Ramp in luminance, possibly also hue
Higher value -> darker color (or vice versa)

Diverging color scale
Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9 Why?

Quantitative Color Encoding

Sequential color scale

Ramp in luminance, possibly also hue
Higher value -> darker color (or vice versa)

Diverging color scale Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9
Avoid simultaneous contrast, hold mappings in memory

Hints for the Colorist

Use only a few colors (~6 ideal)
Colors should be distinctive and named Strive for color harmony (natural colors?)
Use cultural conventions; appreciate symbolism
Get it right in black and white
Respect people with color vision deficiency
Take advantage of perceptual color spaces
Color is cultural and a matter of taste!

