CSE 442 - Data Visualization Color

Leilani Battle University of Washington

Purpose of Color

To label
To measure

To represent and imitate
To enliven and decorate
"Above all, do no harm."

- Edward Tufte

Learning Goals

How is color defined in visualization?

How do we reason about color: as rendered within media? as perceived by the human eye?

What are useful rules of thumb for applying color in visualizations?

Topics

Perception of Color

Light
Visual system - Cone Response, Opponent Signals Mental models - Perception, Appearance, Cognition

Color in Information Visualization
Categorical \& Quantitative encoding
Guidelines for color palette design

Perception of Color

What color is this?

What color is this?

"Yellow"

What color is this?

What color is this?
"Blue"

What color is this?

What color is this?
"Teal" ?

Perception of Color

Physicist's View

Light as electromagnetic waves
Wavelength
Visible spectrum is
$370-730 \mathrm{~nm}$
Power or
"Relative luminance"

Emissive vs. Reflective Light

Additive (digital displays)

Subtractive (print, e-paper)

Perception of Color

Retina

Simple Anatomy of the Retina, Helga Kolb

As light enters our retina...

LMS (Long, Middle, Short) Cones

Sensitive to different wavelengths

As light enters our retina...

LMS (Long, Middle, Short) Cones

Sensitive to different wavelengths Integration with input stimulus

Effects of Retina Encoding

Spectra that stimulate the same LMS response are indistinguishable (a.k.a. "metamers").
"Tri-stimulus"
Computer displays
Digital scanners
Digital cameras

We Use Color Spaces to Express Color Ranges

Color spaces allow us to capture, index, and enumerate colors perceived by the human eye.

Given a set of input parameters, we can extract the corresponding color from the color space

We can also plot the color space to see its organization and relationships between colors

CIE XYZ Color Space

Standardized in 1931 to mathematically represent tri-stimulus response from cones on the retina.
"Standard observer" response curves

Stimulus

Integrate

$$
\begin{aligned}
& X=1 \\
& Y=1 \\
& Z=1
\end{aligned}
$$

CIE Chromaticity Diagram

Colorfulness vs. Brightness
$X=X /(X+Y+Z)$
$y=Y /(X+Y+Z)$

CIE Chromaticity Diagram

Spectrum locus

Purple line
Mixture of two lights appears as a straight line.

CIE Chromaticity Diagram

Spectrum locus

Purple line
Mixture of two lights appears as a straight line.

CIE Chromaticity Diagram

Spectrum locus

Purple line

Mixture of two lights appears as a straight line.

CIE Chromaticity Diagram

Spectrum locus
Purple line
Mixture of two lights appears as a straight line.

Display Gamuts

Typically defined by: 3 Colorants Convex region

Display Gamuts

Deviations from sRGB specification

Example:
($\mathrm{R}, \mathrm{G}, \mathrm{B}$) coordinates ranging from 0-255.
Displays may produce different colors for a coord!

Color Vision Deficiency (CVD)

Missing one or more cones or rods in retina.

Protanope

Deuteranope

Luminance

Color Vision Simulators

Simulate color vision deficiencies

Browser plug-ins
Photoshop plug-ins, etc.

Deuteranope

Perception of Color

Primary Colors

To paint "all colors":
Leonardo da Vinci, circa 1500 described in his notebooks a list of simple colors...

Yellow
Blue
Green
Red

Opponent Processing

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

[Fairchild]

Opponent Processing

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Opponent Processing

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Experiments:

No reddish-green, no blueish-yellow
Color after images

CIE LAB Color Space

Axes correspond to opponent signals
$L^{*}=$ Luminance
$\mathbf{a}^{\star}=$ Red-green contrast
b* $^{*}=$ Yellow-blue contrast
Much more perceptually uniform than RGB! Scaling of axes to represent "color distance" JND = Just noticeable difference (~2.3 units)
D3 + Vega include LAB color space support

CIE LAB and LUV Color Spaces

Standardized in 1976 to mathematically represent opponent processing theory.
Non-linear transformation of CIE XYZ

CIE LAB Color Space

Axes correspond to opponent signals
$L^{*}=$ Luminance
$\mathbf{a}^{\star}=$ Red-green contrast b* $^{*}=$ Yellow-blue contrast

Much more perceptually uniform than sRGB! Scaling of axes to represent "color distance" JND = Just noticeable difference (~2.3 units)
D3 + Vega include LAB color space support!

Perception of Color

Albert Munsell

Developed the first perceptual color system based on his experience as an artist (1905).

Hue, Value, and Chroma

Hue, Value and Chroma

Hue, Value and Chroma

Hue, Value and Chroma

Munsell Color System

Perceptually-based
Precisely reference a color
Intuitive dimensions
Look-up table (LUT)

Munsell Color System

Perceptual Brightness

Color palette

Perceptual Brightness

Color palette

HSL Lightness (Photoshop)

Perceptual Brightness

Color palette

Luminance Y
(CIE XYZ)

Perceptual Brightness

Color palette

Munsell Value

Perceptual Brightness

Color palette

Munsell Value
L* (CIE LAB)

Perceptually-Uniform Color Space

Munsell colors in CIE LAB coordinates

Mark Fairchild

Perception of Color

Color Appearance

If we have a perceptually-uniform color space, can we predict how we perceive colors?
"In order to use color effectively it is necessary to recognize that it deceives continually."

- Josef Albers, Interaction of Color

Simultaneous Contrast

Simultaneous Contrast

Inner \& outer rings are the same physical purple.

Donald

MacLeod

Bezold Effect

Color appearance depends on adjacent colors

Color Appearance Tutorial by Maureen Stone

Crispening

Perceived difference depends on background

Color Appearance Models, Fairchild

Perception of Color

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.
Initial study in 1969
Surveyed speakers from 20 languages
Literature from 69 languages

World Color Survey

World Color Survey

World Color Survey

Naming information from 2,616 speakers from 110 languages on 330 Munsell color chips

Results from WCS

Results from WCS

Universal (?) Basic Color Terms

Basic color terms recur across languages.

\square White	\square Red
\square Grey	\square
Yellow	\square Brown
\square Black	\square Green $\quad \square$ Orange
	\square Blue
	\square Purple

Evolution of Basic Color Terms

Proposed term evolution across languages.

Naming Effects Color Perception

Color name boundaries

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

500nm
600 nm
700 nm

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Icicle Tree with Rainbow Coloring

Color Naming Models [Heer \& Stone "12]

Model 3 million responses from XKCD survey Bins in LAB space
sized by saliency:
How much do people agree on color name? Modeled by entropy of p(name / color)

Perception of Color

Designing Colormaps

Colormap Design Considerations

Perceptually distinguishable colors
Value distance matches perceptual distance
Colors and concepts properly align
Aesthetically pleasing, intriguing
Respect color vision deficiencies
Should survive printing to black \& white
Don't overwhelm people's capability!

Discrete (Binary, Categorical)

Symbol Legend

Continuous (Sequential, Diverging, Cyclic)

| Gradient Legend | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Discretized Continuous

Discrete Gradient

\square

Categorical Color

Gray's Anatomy

Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries. (http://www.bartleby.com/107/illus520.html)

Allocation of the Radio Spectrum

http://www.ntia.doc.gov/osmhome/allochrt.html

Allocation of the Radio Spectrum

UNITED

STATES FREQUENCY

ALLOCATIONS
THE RADIO SPECTRUM
rado servces color Legeno
\square veaure $\quad \square$ minamurn $\quad \square$ sosemown
\square vearmer \square wowas \square moxirawion

activity code
\square avanertuaum
\square menovenervanion
allocation usage designation

Issues:

Too many colors
Hard to remember mapping
Colors not distinctive, some are very similar Poor grouping: similar colors, different values
Labels cause clutter
Color surround effects
Colors interactions may not look good together
http://www.ntia.doc.gov/osmhome/allochrt.html

Palette Design \& Color Names

Minimize overlap and ambiguity of colors.

Color Name Distance										Salience	Name blue 62.9\%
0.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.20	. 47	
1.00	0.00	1.00	0.97	1.00	1.00	1.00	1.00	0.96	1.00	. 90	orange 93.9\%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.90	0.99	. 67	green 79.8\%
1.00	0.97	1.00	0.00	1.00	0.95	0.99	1.00	1.00	1.00	. 66	red 80.4\%
0.98	1.00	1.00	1.00	0.00	0.96	0.91	0.97	1.00	0.99	. 47	purple 51.4\%
1.00	1.00	1.00	0.95	0.96	0.00	0.97	0.93	0.98	1.00	. 37	brown 54.0\%
1.00	1.00	1.00	0.99	0.91	0.97	0.00	1.00	1.00	1.00	. 58	pink 71.7%
1.00	1.00	1.00	1.00	0.97	0.93	1.00	0.00	1.00	1.00	. 67	grey 79.4%
1.00	0.96	0.90	1.00	1.00	0.98	1.00	1.00	0.00	1.00	. 18	yellow 31.2\%
0.20	1.00	0.99	1.00	0.99	1.00	1.00	1.00	1.00	0.00	. 25	blue 25.4%
Tableau-10								verage	0.97	. 52	

Palette Design \& Color Names

Minimize overlap and ambiguity of colors.

Color Name Distance										Salience	Name
0.00	1.00	1.00	0.89	0.07	1.00	0.35	0.99	1.00	0.89	. 30	blue 50.5\%
1.00	0.00	0.99	1.00	1.00	0.92	1.00	0.84	0.98	0.99	. 21	red 27.8\%
1.00	0.99	0.00	1.00	0.98	1.00	1.00	1.00	0.17	1.00	. 34	green 36.8\%
0.89	1.00	1.00	0.00	0.98	1.00	0.71	0.93	1.00	0.32	. 55	purple 67.3\%
0.07	1.00	0.98	0.98	0.00	1.00	0.36	1.00	0.97	0.95	. 20	blue 36.6\%
1.00	0.92	1.00	1.00	1.00	0.00	1.00	0.97	0.99	1.00	. 39	orange 51.9\%
0.35	1.00	1.00	0.71	0.36	1.00	0.00	0.95	0.92	0.42	. 13	blue 15.7\%
0.99	0.84	1.00	0.93	1.00	0.97	0.95	0.00	0.98	0.85	. 16	pink 29.4\%
1.00	0.98	0.17	1.00	0.97	0.99	0.92	0.98	0.00	0.97	. 12	green 21.7\%
0.89	0.99	1.00	0.32	0.95	1.00	0.42	0.85	0.97	0.00	. 30	purple 23.9\%
Excel								verage	0.87	. 27	

Quantitative Color

Rainbow Color Maps

Be Wary of Naïve Rainbows!

1. Hues are not naturally ordered
2. People segment colors into classes, perceptual banding
3. Naive rainbows are unfriendly to color blind viewers
4. Some colors are less effective at high spatial frequencies

But rainbow helpful for inference?

Reda et al. '21: Color Nameability Predicts Inference Accuracy in Spatial Visualizations
Rainbow found ineffective for value comparison [Liu '18]...
...but color name salience found to improve performance on inference task of distinguishing distributions [Reda '21] Task matters!

Steps, rather than Gradients?

Classing Quantitative Data

Age-adjusted mortality rates for the United States. Common option: break into 5 or 7 quantiles.

Classing Quantitative Data

1. Equal interval (arithmetic progression)
2. Quantiles (recommended)
3. Standard deviations
4. Clustering (Jenks' natural breaks / 1D K-Means)

Minimize within group variance
Maximize between group variance

Quantitative Color Encoding

Sequential color scale
Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Quantitative Color Encoding

Sequential color scale
Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Diverging color scale
Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Quantitative Color Encoding

Sequential color scale
Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Diverging color scale
Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9 Why?

Quantitative Color Encoding

Sequential color scale
Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Diverging color scale
Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9
Avoid simultaneous contrast, hold mappings in memory

Sequential Scales: Single-Hue

Ramp primarily in luminance, subtle hue difference

Sequential Scales: Multi-Hue

Ramp luminance \& hue in perceptual color space Avoid contrasts subject to color blindness!

Sequential Scales: Multi-Hue

Moderate protanomaly

Complete protanopia

Sample images

Viridis, \qquad

Diverging Color Scheme

Designing Diverging Scales

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Designing Diverging Scales

Hue Transition
Carefully Handle Midpoint
Choose classes of values
Low, Average, High - Average should be gray
Critical Breakpoint
Defining value e.g., 0
Positive \& negative should use different hues
Extremes saturated, middle desaturated

Hints for the Colorist

Use only a few colors (~6 ideal)
Colors should be distinctive and named
Strive for color harmony (natural colors?)
Use cultural conventions; appreciate symbolism Get it right in black and white
Respect the color blind
Take advantage of perceptual color spaces
Color is cultural and a matter of taste!

Administrivia

A3: Interactive Prototype

Create an interactive visualization. Choose a driving question for a dataset and develop an appropriate visualization + interaction techniques, then deploy your visualization on the web.
Due by 11:59pm on Monday, Feb 13.
We encourage you to form teams of 3-4 people.

Form A3 + Final Project Team

Form a team of 3-4 for A3 and the Final Project.
(Start thinking about your Final Project, too!)
A3 is open-ended. You can use it to start exploring your FP topic if you like, or expand on A2.

Submit signup form by Fri $2 / 3,11: 59$ pm. If you do not have team mates, you should:

- Post on Ed about your interests/project ideas

Requirements

Interactive. You must implement interaction methods! However, this is not only selection / filtering / tooltips. Also consider annotations or other narrative features to draw attention and provide additional context

Web-based. D3 is encouraged, but not required.
Deploy visualization with GitHub pages or Observable.
Write-up. Provide design rationale on your web page.

Interactive Prototype Tips

Start now. It will take longer than you think.
Keep it simple. Choose a minimal set of interactions that enables users to explore and generate interesting insights. Do not feel obligated to convey everything about the data: focus on a compelling subset.

Promote engagement. How do your chosen interactions reveal interesting observations?

Tutorial on Friday

Web Publishing: Friday 2/3 4:30-6pm in G20, Led by Aakash and Wei Jun

