CSE 442 - Data Visualization Color

Leilani Battle University of Washington

Purpose of Color

To label
To measure
To represent and imitate
To enliven and decorate

"Above all, do no harm." - Edward Tufte

Learning Goals

How is color defined in visualization?

How do we reason about color:

as rendered within media?

as perceived by the human eye?

What are useful rules of thumb for applying color in visualizations?

Topics

Perception of Color

Light

Visual system - Cone Response, Opponent Signals Mental models - Perception, Appearance, Cognition

Color in Information VisualizationCategorical & Quantitative encoding Guidelines for color palette design

Perception of Color

"Yellow"

Perception of Color

Light

Cone Response

"Yellow"

Color Cognition

Mark D. Fairchild

COLOR APPEARANCE

MODELS

Color Appearance

Color Perception

Physicist's View

Light as electromagnetic waves

Wavelength

Visible spectrum is

370-730 nm

Power or

"Relative luminance"

A Field Guide to Digital Color, M. Stone

Emissive vs. Reflective Light

Perception of Color

Light

Cone Response

"Yellow"

Color Cognition

Mark D. Fairchild

COLOR APPEARANCE

MODELS

Color Appearance

Color Perception

Retina

Simple Anatomy of the Retina, Helga Kolb

As light enters our retina...

LMS (Long, Middle, Short) Cones Sensitive to different wavelengths

A Field Guide to Digital Color, M. Stone

As light enters our retina...

LMS (Long, Middle, Short) Cones
Sensitive to different wavelengths
Integration with input stimulus

A Field Guide to Digital Color, M. Stone

Effects of Retina Encoding

Spectra that stimulate the same LMS response are indistinguishable (a.k.a. "metamers").

"Tri-stimulus"
Computer displays
Digital scanners
Digital cameras

We Use Color Spaces to Express Color Ranges

Color spaces allow us to capture, index, and enumerate colors perceived by the human eye.

Given a set of input parameters, we can extract the corresponding color from the color space

We can also plot the color space to see its organization and relationships between colors

CIE XYZ Color Space

Standardized in 1931 to mathematically represent tri-stimulus response from cones on the retina.

"Standard observer" response curves

Colorfulness vs. Brightness

$$x = X / (X+Y+Z)$$

$$y = Y / (X+Y+Z)$$

Spectrum locus

Purple line

Spectrum locus

Purple line

Spectrum locus

Purple line

Spectrum locus

Purple line

Display Gamuts

Typically defined by:

3 Colorants

Convex region

Display Gamuts

Deviations from sRGB specification

Example:

(R, G, B) coordinates ranging from 0-255.

Displays may produce different colors for a coord!

Color Vision Deficiency (CVD)

Missing one or more cones or rods in retina.

Normal Retina

Protanopia

Color Vision Simulators

Simulate color vision deficiencies
Browser plug-ins
Photoshop plug-ins, etc.

Protanope

<u>Tr</u>itanope

Perception of Color

Light

Cone Response

"Yellow"

Color Cognition

Mark D. Fairchild

COLOR APPEARANCE

MODELS

Color Appearance

Color Perception

Primary Colors

To paint "all colors": Leonardo da Vinci, circa 1500 described in his notebooks a list of simple colors...

> Yellow Blue Green Red

Opponent Processing

LMS are combined to create:

Lightness Red-green contrast Yellow-blue contrast

[Fairchild]

Opponent Processing

LMS are combined to create:

Lightness Red-green contrast Yellow-blue contrast

Opponent Processing

LMS are combined to create:

Lightness Red-green contrast Yellow-blue contrast

Experiments:

No reddish-green, no blueish-yellow Color after images

CIE LAB Color Space

Axes correspond to opponent signals

 $L^* = Luminance$

a* = Red-green contrast

b* = Yellow-blue contrast

Much more perceptually uniform than RGB! Scaling of axes to represent "color distance"

JND = Just noticeable difference (~2.3 units) D3 + Vega include LAB color space support

CIE LAB and LUV Color Spaces

Standardized in 1976 to mathematically represent opponent processing theory.

Non-linear transformation of CIE XYZ

CIE LAB Color Space

Axes correspond to opponent signals

 $L^* = Luminance$

a* = Red-green contrast

b* = Yellow-blue contrast

Much more perceptually uniform than sRGB! Scaling of axes to represent "color distance"

JND = Just noticeable difference (~2.3 units) D3 + Vega include LAB color space support!

Perception of Color

Light

Cone Response

"Yellow"

Color Cognition

COLOR APPEARANCE MODELS

Color Appearance

Color Perception

Albert Munsell

Developed the first perceptual color system based on his experience as an artist (1905).

Hue, Value, and Chroma

Hue, Value and Chroma

Hue, Value and Chroma

Hue, Value and Chroma

Munsell Color System

Perceptually-based
Precisely reference a color
Intuitive dimensions
Look-up table (LUT)

Munsell Color System

Color palette

Color palette

HSL Lightness (Photoshop)

Color palette

Luminance Y (CIE XYZ)

Color palette

Munsell Value

Color palette

Munsell Value L* (CIE LAB)

Perceptually-Uniform Color Space

Munsell colors in CIE LAB coordinates

Perception of Color

Light

Cone Response

"Yellow"

Color Cognition

Color Appearance

If we have a perceptually-uniform color space, can we predict how we perceive colors?

"In order to use color effectively it is necessary to recognize that it deceives continually."

- Josef Albers, Interaction of Color

Simultaneous Contrast

Simultaneous Contrast

Inner & outer rings are the same physical purple.

Donald MacLeod

Bezold Effect

Color appearance depends on adjacent colors

Color Appearance Tutorial by Maureen Stone

Crispening

Perceived difference depends on background

Color Appearance Models, Fairchild

Perception of Color

Light

Cone Response

"Yellow"

Color Cognition

COLOR APPEARANCE MODELS

Color Appearance

Color Perception

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay.

Initial study in 1969
Surveyed speakers from 20 languages
Literature from 69 languages

World Color Survey

World Color Survey

World Color Survey

Naming information from 2,616 speakers from 110 languages on 330 Munsell color chips

Results from WCS

Results from WCS

Universal (?) Basic Color Terms

Basic color terms recur across languages.

Evolution of Basic Color Terms

Proposed term evolution across languages.

Naming Effects Color Perception

Color name boundaries

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Rainbow Color Map

We associate and group colors together, often using the name we assign to the colors.

Icicle Tree with Rainbow Coloring

Color Naming Models [Heer & Stone '12]

Model 3 million responses from XKCD survey Bins in LAB space

sized by *saliency*: How much do people

agree on color name? Modeled by entropy of *p(name | color)*

Perception of Color

Light

Cone Response

"Yellow"

Color Cognition

Mark D. Fairchild

COLOR APPEARANCE

MODELS

Color Appearance

Color Perception

Designing Colormaps

Colormap Design Considerations

Perceptually distinguishable colors Value distance matches perceptual distance Colors and concepts properly align Aesthetically pleasing, intriguing Respect color vision deficiencies Should survive printing to black & white Don't overwhelm people's capability!

Discrete (Binary, Categorical)

Continuous (Sequential, Diverging, Cyclic)

Discretized Continuous

Categorical Color

Gray's Anatomy

Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries. (http://www.bartleby.com/107/illus520.html)

Allocation of the Radio Spectrum

Alloc

UNITED STATES

FREQUENC'

ALLOCATION

THE RADIO SPECT

RADIO SERVICES COLOR LEGEND

ADDIMUTOL MIDIO

ASSONUTOR UND MOBILE

ACRONALTICAL RODDAMISATION

ANTER WITH WATER

BROKONTING MOTORIO DE RECONOCION DE RECONOCI

SATILUTE SATILUTE SATILUTE

FOUR SATELLITE SCHOOL SATELLITE STAN

ACTIVITY CODE

EXCLUSIVE CONTRIBUTION CONTRIBU

NON-GOVERNMENT EXCLUSIVE

ALLOCATION USAGE DESIGNATION

Princery REED Capital Laters

RADIO SERVICES COLOR LEGEND

AERONAUTICAL MOBILE

INTER-SATELLITE

RADIO ASTRONOMY

AEF MÓI

AERONAUTICAL MOBILE SATELLITE

LAND MOBILE

RADIÓDETERMINATION SATELLITE

SATELL

AERONAUTICAL RADIONAVIGATION

SATELLITE

RADIOLOCATION

AMATEUR

MARITIME MOBILE

RADIOLOCATION SATELLITE

AMATEUR SATELLITE

MARITIME MOBILE SATELLITE

RADIONAVIGATION

BROADCASTING

MARITIME RADIONAVIGATION

RADIONAVIGATION SATELLITE

BROADCASTING SATELLITE

METEOROLOGICAL AIDS

SPACE OPERATION

EARTH EXPLORATION SATELLITE

METEOROLOGICAL SATELLITE

SPACE RESEARCH

FIXED

MOBILE

STANDARD FREQUENCY AND TIME SIGNAL

FIXED SATELLITE

MOBILE SATELLITE

STANDARD FREQUENCY AND TIME SIGNAL SATELLITE

'um

ACTIVITY CODE

Allocation of the Radio Spectrum

Palette Design & Color Names

Minimize overlap and ambiguity of colors.

Palette Design & Color Names

Minimize overlap and ambiguity of colors.

Quantitative Color

Rainbow Color Maps

Be Wary of Naïve Rainbows!

- 1. Hues are not naturally ordered
- 2. People segment colors into classes, perceptual banding
- 3. Naive rainbows are unfriendly to color blind viewers
- 4. Some colors are less effective at high spatial frequencies

But rainbow helpful for inference?

Reda et al. '21: Color Nameability Predicts Inference Accuracy in Spatial Visualizations

Rainbow found ineffective for value comparison [Liu '18]...

...but color name salience found to improve performance on *inference task* of distinguishing distributions [Reda '21] **Task matters!**

Steps, rather than Gradients?

150 200 250 Distribution of HSA rates per 100,000 population

SOURCE: CDC/NCHS

402, 404-429

Classing Quantitative Data

Age-adjusted mortality rates for the United States. Common option: break into 5 or 7 quantiles.

Classing Quantitative Data

- 1. Equal interval (arithmetic progression)
- 2. Quantiles (recommended)
- 3. Standard deviations
- 4. Clustering (Jenks' natural breaks / 1D K-Means)
- Minimize within group variance
- Maximize between group variance

Sequential color scale

Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Sequential color scale

Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Diverging color scale

Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Sequential color scale

Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Diverging color scale

Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9 *Why?*

Sequential color scale

Ramp in luminance, possibly also hue Higher value -> darker color (or vice versa)

Diverging color scale

Useful when data has meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9

Avoid simultaneous contrast, hold mappings in memory

Sequential Scales: Single-Hue

Ramp primarily in luminance, subtle hue difference

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Sequential Scales: Multi-Hue

Ramp luminance & hue in perceptual color space Avoid contrasts subject to color blindness!

Sequential Scales: Multi-Hue

Diverging Color Scheme

Designing Diverging Scales

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Designing Diverging Scales

Hue Transition
Carefully Handle Midpoint
Choose classes of values

Low, Average, High - Average should be gray **Critical Breakpoint** Defining value e.g., 0

Positive & negative should use different hues **Extremes saturated, middle desaturated**

Hints for the Colorist

Use **only a few** colors (~6 ideal)

Colors should be distinctive and named

Strive for color **harmony** (natural colors?)

Use cultural conventions; appreciate symbolism

Get it right in black and white

Respect the color blind

Take advantage of perceptual color spaces

Color is cultural and a matter of taste!

Administrivia

A3: Interactive Prototype

Create an interactive visualization. Choose a driving question for a dataset and develop an appropriate visualization + interaction techniques, then deploy your visualization on the web.

Due by 11:59pm on **Monday, Feb 13**. We encourage you to form teams of 3-4 people.

Form A3 + Final Project Team

Form a **team of 3-4** for A3 and the Final Project.

(Start thinking about your Final Project, too!)

A3 is open-ended. You can use it to start exploring your FP topic if you like, or expand on A2.

Submit signup form by Fri 2/3, 11:59pm.

If you do not have team mates, you should:

- Post on Ed about your interests/project ideas

Requirements

Interactive. You must implement interaction methods! However, this is not only selection / filtering / tooltips. Also consider annotations or other narrative features to draw attention and provide additional context

Web-based. D3 is encouraged, but not required. Deploy visualization with GitHub pages or Observable.

Write-up. Provide design rationale on your web page.

Interactive Prototype Tips

Start now. It will take longer than you think.

Keep it simple. Choose a *minimal* set of interactions that enables users to explore and generate interesting insights. Do not feel obligated to convey *everything* about the data: focus on a compelling subset.

Promote engagement. How do your chosen interactions reveal interesting observations?

Tutorial on Friday

Web Publishing: Friday 2/3 4:30-6pm in G20, Led by Aakash and Wei Jun