cse 442 - Data Visualization The Value of Visualization

Jeffrey Heer University of Washington

How much data (bytes) did we produce in 2010?

2010: 1,200 exabytes and exponential growth...

Gantz et al., 2008, 2010

Physical Sensors Image courtesy cabspotting.org

C

The ability to take data-to be able to **understand** it, to **process** it, to **extract value** from it, to **visualize** it, to **communicate** it-that's going to be

a hugely important skill in the next decades, ... because now we really do have **essentially free and ubiquitous data**. So the complimentary scarce factor is the ability to understand that data and extract value from it.

> Hal Varian, Google's Chief Economist The McKinsey Quarterly, Jan 2009

But wait!

The ability to take data-to be able to **understand** it, to process it, to extract value from it, to visualize it, to communicate it-that's going to be a hugely important skill in the net free "to whom? because now we really do have essentially free and ubiquitous data. So the complimentary scarce factor "ubiquitous" about whom? hat data and extract value from it. ...to whose benefit?

> Hal Varian, Google's Chief Economist The McKinsey Quarterly, Jan 2009

TEXT SIZE

- +

My Facebook Was Breached by Cambridge Analytica. Was Yours?

How to find out if you are one of the 87 million victims

ROBINSON MEYER | APR 10, 2018 | TECHNOLOGY

...

🔰 Tweet

f Share

CHICAGO MAY6-11 LEARN Machine Learning & Advanced Analytics

f Share

💟 Tweet

...

TEXT SIZE

High potential for data abuse...

How might we use **visualization** to **empower understanding** of data and analysis processes?

What is Visualization?

"Transformation of the symbolic into the geometric" [McCormick et al. 1987]

"... finding the artificial memory that best supports our natural means of perception." [Bertin 1967]

"The use of computer-generated, interactive, visual representations of data to amplify cognition." [Card, Mackinlay, & Shneiderman 1999]

Set A		Se	Set B		Set C		
Х	Y	Х	Y	Х	Y	Х	Y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.11	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

Summai	ry Statistics
$u_{X} = 9.0$	$\sigma_{\chi} = 3.317$
$u_{Y} = 7.5$	$\sigma_{\rm Y} = 2.03$

Linear Regression Y = 3 + 0.5 X $R^2 = 0.67$

[Anscombe 1973]

Set A

Set B

Set C

Set D

[Anscombe 1973]

authors

Hannes Hirzel

Deservation

Ed Poor

Avellet Conversion script

I Rownible

Interrenic 149

Circlesoftei

Bryan Deritsen

Robert Merke

PerreAbbat Fredbauder

1100

Gog

Ernet

Gent Dwmpers

Heron

Ryguesu

The Anone

Cevelalichte

Boguerice

Fred Douder ANSchmidt

Someone ette

Misburg? Cyde

Michael

Howevery

Tannin 2undark Sections. Manager. Dante Alighieri

Zoe Lenor

100

Also Peaked

Jalmouse

Canenabert

I Administration

Ones zzz let

I Town Superve Dresser Paul Drye

posts

COLOR 97010

🔛 individual 🔛 text changes 💥 text age

05-M 1.80 2003 2003

..

...

Therefore, over time, the types of orga have traits better. to their envi tend to become the dominant ones in as wirenment, while org nisms poorly ad eir environment will become extinct. successive generations did not develop species would simp niches die out. Therefi over great spans of tin species. The central role of natural set evolutionary theory has created a strong between that field and the study of eco

.Genetic drift

Genetic drift describes changes in gene that cannot be asonibed to selective pre are due instead to events that are usre inherited traits. This is especially import mating populations, w y cane enough offspring to maintain the same ution as the parental generation on. Two separate popwith the same gene frequency m ft" by ra nes that are present in one have bee other). Rare sporadic events (volcanic e meteor impact, etc.) drift by altering the ger selective pressures.

Development of evolutionary

As science has u information about the l ion have changed. The general tr been not to overturn well-supported the supplant them with more detailed and th more complex ones.

While transmutation was accepted by a number of scientists before 1

Following the dawn of clear that a major mechanism for varia population is the p shift into one of the other categories.

December

2001

Why Create Visualizations?

Why Create Visualizations?

Answer questions (or discover them) Make decisions See data in context Expand memory Support graphical calculation Find patterns Present argument or tell a story Inspire

Record Information

Gallop, Bay Horse "Daisy" [Muybridge]

1.

Marey's sphygmograph in use. 1860. La méthode graphique dans les sciences expérimentales et principalement en physiologie et en médecine.

E.J. Marey's sphygmograph [from Braun 83]

Percent of children who attended college

You Draw It: How Family Income Predicts Children's College Chances [New York Times, May 28, 2015]

You Draw It: How Family Income Predicts Children's College Chances [New York Times, May 28, 2015] Support Reasoning

HISTORY OF O-RING DAMAGE ON SRM FIELD JOINTS

-		Cross Sectional View			Top View			
and the	SRM No.	Erosion Depth (in.)	Perimeter Affected (deg)	Nominal Dia. (in.)	Length Of Max Erosion (in.)	Total Heat Affected Length (in.)	Clocking Location (deg)	
61A LH Center Field** 61A LH CENTER FIELD** 51C LH Forward Field** 51C RH Center Field (prim)*** 51C RH Center Field (sec)***	22A 222A 15A 15B 15B	None NONE 0.010 0.038 None	None NONE 154.0 130.0 45.0	0.280 0.280 0.280 0.280 0.280 0.280	None NONE 4.25 12.50 None	None NONE 5.25 58.75 29.50	36°66° 338°-18° 163 354 354	
41D RH Forward Field 41C LH Aft Field* 418 LH Forward Field	13B 11A 10A	0.028 None 0.040	110.0 None 217.0	0.280 0.280 0.280	3.00 None 3.00	None None 14.50	275	
STS-2 RH Aft Field	2B	0.053	116.0	0.280			90	

*Hot gas path detected in putty. Indication of heat on O-ring, but no damage. **Soot behind primary O-ring. ***Soot behind primary O-ring, heat affected secondary O-ring.

Clocking location of leak check port - 0 deg.

د

OTHER SRM-15 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY AND NO SOOT NEAR OR BEYOND THE PRIMARY O-RING.

SRM-22 FORWARD FIELD JOINT HAD PUTTY PATH TO PRIMARY O-RING, BUT NO O-RING EROSION AND NO SOOT BLOWBY. OTHER SRM-22 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY.

BLOW BY HISTORY SRM-15 WORST BLOW-BY		HISTORY	OF (DEGR	O-RING T	TEMPERATURES
· 2 CASE JOINTS (80°), (110°) ARC	MOTOR	_met	AMB	O-RING	WIND
O MUCH WORSE VISUALLY THAN SRM-22	Dm-+	68	36	47	IO MPH
	Dm - 2	76	45	52	10 mp4
SRM 22 BLOW-BY	QM - 3	72.5	40	48	10 m PH
· 2 CASE JOINTS (30-40")	Qm - 4	76	48	51	10 mPH
	SRM-15	52	64	53	10 mpt
SRM-13 R, 15, 16A, 18, 23A 24A	5RM-22	77	78	75	10 mpH
O NOZZLE BLOW-BY	SRM-25	55	26	29 27	IO MPH 25 MPH

2 of 13 pages of material faxed to NASA by Morton Thiokol [from Tufte 1997]

Make Decisions: Challenger

Make Decisions: Challenger

But wait! What is an appropriate "damage index"? Which temperatures, O-ring or outside air?

Chart of temperatures vs. O-ring damage [Tufte 97]

Data in Context: Cholera Outbreak

In 1854 John Snow plotted the position of each cholera case on a map. [from Tufte 83]

Data in Context: Cholera Outbreak

Used map to hypothesize that pump on Broad St. was the cause. [from Tufte 83]

Expand Memory: Multiplication

Expand Memory: Multiplication

34 x 72

Expand Memory: Multiplication

Answer Questions: Brain Power?

N 🖻	licros	oft Excel - ani	mal.xls						_	
:2	Ele	Edit View	Insert	Format	Tools	<u>D</u> ata	Window	Help	-	đΧ
	A1	-	f*	ID						
	Α			C D				1		
1	ID .	Name			Body	Weight	Brain	Weight		-
2	1	Lesser Short-tailed Shrew				5	5	0.14		
3	2	Little Brown Bat				10)	0.25		
4	3	Mouse				23	3	0.3		
5	4	Big Brown Bat			23 0.4					
6	- 5	Musk Shrew				48	3	0.33		
7	6	Star Nosed Mole			60			1		
8	7	Eastern American Mole				75	5	1.2		
9	8	Ground Squirrel				101	1	4		
10	9	Tree Shrew				104	1	2.5		
11	10	Golden Hamster				120)	1		_
12	11	Mole Rate				122	2	3		
13	12	Galago				200)	5		
14	13	Rat				280)	1.9		
15	14	Chinchilla				425	j –	6.4		
16	15	Desert Hedgehog				550)	2.4		
17	16	Rock Hyrax (a)				750 12.3				
18	17	European Hedgehog				785 3.5				
19	18	Tenrec				900)	2.6		
20	19	Arctic Ground Squirrel				920)	5.7		
21	20	African Giant Pouched Rat			1000 6.6					
22	21	Guinea Pig			1040 5.5					
23	22	Mountain Beaver			1350 8.1					
24	23	Slow Loris				1400)	12.5		
25	24	Genet				1410)	17.5		
26	25	Phalanger				1620)	11.4		-
H 4	• •	animal /				•				
Read	ly -									1.

		I I		-				i
Modern Man								
Dolphin								
Homo habilis								
Gracile Australopithecus								
Chimpanzee								
Baboon								
Crow								
Vampire Bat								
Wolf								
Gorilla								
Elephant								
Hummingbird								
Lion						•		
Rat								
Mole								
Opossum								
Blue Whale								
Saurornithoid								
Goldfish								
Ostrich								
Alligator								
Tyrannosaurus rex								
Coelacanth								
Eel			•					
Stegosaurus								
Brachiosaurus								
Diplodocus								
0.0.0	4	1	1	1	1			Т
	0.0312	- 3		-2		-1		0
ne Elements of Graphi	ng Data			aber 14		a tailen		
		00	Drain I	Noight	2/0100	Badu	Noight	
leveland	L	Ug 10	Dialiti	weight -	- 73 LOg	10 Body	weight	

Convey Information

1856 "Coxcomb" of Crimean War Deaths, Florence Nightingale

Communicate, Inform, Inspire

Visualizing Black America, Du Bois et al. 1900

Bones in hand, Gray's Anatomy 1918 ed.

New deaths attributed to Covid-19 in European Union, United States, Brazil and United Kingdom

Seven-day rolling average of new deaths, by number of days since 3 average daily deaths first recorded

Number of days since 3 average daily deaths first recorded

Source: Financial Times analysis of data from the European Centre for Disease Prevention and Control, the Covid Tracking Project,

the UK Dept of Health & Social Care and the Spanish Ministry of Health.

Data updated September 25 2020 12.46pm BST. Interactive version: ft.com/covid19

FINANCIAL TIMES

Coronavirus Tracked John Burn-Murdoch & Financial Times

The coronavirus crisis is different

Job growth (or loss) since each recession began, based on weekly earnings

Notes: Based on a three-month average to show the trend in volatile data.

Source: Labor Department via IPUMS, with methodology assistance from Ernie Tedeschi of Evercore ISI THE WASHINGTON POST

The Covid Economy Washington Post

The Value of Visualization

Record information Blueprints, photographs, seismographs, ... <u>Analyze data to support reasoning</u>

Develop and assess hypotheses Find patterns / Discover errors in data Expand memory

Convey information Communicate, inform, inspire Collaborate and revise

Goals of Visualization Research

- 1 Understand how visualizations convey information What do people perceive / comprehend? How do visualizations inform mental models?
- 2 Develop principles and techniques for creating effective visualizations and supporting analysis Leverage perception & augment cognition Improve ties between visualization & mental model

Course Topics

Data and Image Models

Sémiologie Graphique [Bertin 67]

Visualization Design

Sales of SlicersDicers Compared to Sales of Other Products SlicerDicers' Sales Compared to Other Products July - December, 2011 vs. RoundTuits vs. NervousNellies 300% 300% \$650,000 250% 250% Monthly 200% AhNuts 200% \$600,000 150% 150% Slicers-\$550,000 100% Dicers 50% 50% NervousNellies \$500,000 0% 0% vs. Thingamagigs vs. Whatchamacallits \$450,000 300% 300% RingaDingies 250% 250% \$400,000 200% 200% \$350,000 150% 150% RoundTuits 100% 100% \$300,000 50% 50% 036 0% \$250,000 SlicerDicers vs. AhNuts vs. WileyWidgets 300% 300% \$200,000 250% 250% SweetNuthins \$150,000 200% 200% 150% 150% \$100,000 100% 100% ThingamaGigs 50% 50% \$50,000 0% \$0 vs. RingaDingies vs. SweetNuthins August Whatchamacallits 300% 300% July October November September December 250% 250% 200% 200% WileyWidgets 150% 150% 100% 100% 50% 50%

Problematic design

Redesign

0%

Jul Aug Sep Oct Nov Dec

0%

Jul Aug Sep Oct Nov Dec

Exploratory Data Analysis

Dymaxion Maps [Fuller 46]

Visualization Software

D3: Data-Driven Documents Vega-Lite / Altair

Animation

Animated transitions in statistical data graphics [Heer & Robertson 07]

Color

qualitative У П ŝ n TEA TFA qualitative diverging binary -1 0 +1 ΤE А diverging seque -10+1 1 1 -1 0 +1 diverging sequential diverging +10 -10 -1 0 +1 255075

Color Brewer

Graphical Perception

The psychophysics of sensory function [Stevens 61]

Hierarchies

Degree-Of-Interest Trees [Heer & Card 04]

👙 Vizster

File Options Tools

Scalability

Magnitude **Hide Unfiltered** 600,000,000 400.000.000 Count 200,000,000 22 18 19 Hide Unfiltered **Reset Brush** 90 Count 80 10,000,000 70 20,000,000 60 30,000,000 50 40,000,000 40 50,000,000 30 20-60,000,000 10-Dec 0 -10 -20 -30 -40--50 -60 -70 -80 20 40 60 100 120 140 160 180 200 220 240 260 286 300 320 346 86 Ra

Radial Velocity

Interactive querying of 1.7B stars (1.2TB) in Falcon [Moritz et al. 2019]

Powered by Falcon

☆

Course Mechanics

You should expect to:

- **1** Evaluate and critique visualization designs
- 2 Learn visualization techniques & theory
- **3** Implement interactive data visualizations
- 4 Develop a substantial visualization project

Instructors

Instructor Jeffrey Heer

OH: *Tue 10-11am*

Teaching Assistants **Abhishek Babu Vishal Devireddy** Naveena Karusala Xia Su **Firn Teanklin Yueqian Zhang**

OH: Mon 1:30-2:30pm OH: Online / Ed OH: By appointment OH: Online / Ed OH: Wed 1:30-2:30pm OH: Fri 2:30-3:30pm

Abhishek Babu babua @ cs

Office hours: Mondays 1:30 - 2:30 PM

I'm an MS student in the BS/MS program and I'm interested in machine learning and data engineering.

Relevant technical skills: JavaScript, TypeScript, HTML/ CSS, D3.js, general web dev (and other data wrangling libraries in Python)

I enjoy Spikeball as well! (check out Husky Roundnet Club)

Vishal Devireddy

Email vishald@cs
Office hours by appointment / Ed

I'm a BS/MS student interested in interactive web development, HCI, and cool graphs.

Ask me about

JavaScript + CSSWeb design

•Web accessibility

ObservableD3Idyll

Nussara (Firn) Tieanklin

nussara@cs.washington.edu Office hour: Wed 1:30 - 2:30 PM

Research

- <u>Seattle Community Networks</u> providing internet access to resource-constrained community
- Evaluate the impact of Air Pollution on Grab motorcycle drivers/riders

Technical Experience

User research, Design process, Data Management, Web-programming

(Covid) Hobbies

- Gardenning
- Badminton
- Playing computer games
- Travelling

Naveena

- ▶ 5th year PhD student in the ICTD Lab
- Research in HCI and global development, specifically on health messaging to underserved populations
- Excited to talk about: design of visualizations

Xia Su xiasu@cs.washington.edu

- Hi! I'm a first year PhD student researching into HCI with special interest in design and creativity.
- Have background in design. Feel free to discuss your designs with me!
- No office hour, but I manage the online discussions with Vishal. So chat with me online!
- Will lead a Tableau Tutorial with Naveena on Oct. 8th.

Yueqian Zhang OH: Friday 2:30 pm - 3:30 pm

I am a senior **majoring in CS** and **minoring in Education**. I am interested in **Accessibility** and **Graphics**. Outside of CS I enjoy **design** and **drawing**. Come talk to me! I'd love to meet everyone :)

Some of my artworks:

Readings

- From books, notebooks, and linked articles. Material in class will loosely follow readings. <u>Readings should be read by start of class.</u> Complete non-scored quizzes on Canvas. Post comments on class forum. One comment or peer reviews each week.
 - Post comments by Friday 11:59pm.
 - You have 1 discussion "pass" for the quarter.

Textbook

An Introduction to Designing With D3

Interactive Data Visualization

for the Web

Interactive Data Visualization for the Web, 2nd Edition

For learning D3! <u>Book available online.</u> <u>Code / examples on GitHub.</u>

We will be using **D3 v7**. <u>https://d3js.org</u>

O'REILLY[®]

Scott Murray
Interactive Vega-Lite Notebooks

Hands-on engagement with course concepts and tools using Observable (JavaScript) notebooks.

Assignments

CP Class Participation (10%) A1 Expository Visualization (10%) - Due 10/11 A2 Deceptive Visualization (15%) - Due 10/20 Peer Review (5%) - Due 10/25 A3 Interactive Prototype (20%) - Due 11/8 Peer Review (5%) - Due 11/15 **FP** Final Project (35%) Proposal - Due 11/19 Demonstration Video - Due 12/8 Final Prototype - Due 12/14

Final Project

Produce an **explorable visual explanation** Initial **prototype** and **design review Final deliverables** and **video presentation** Submit and **publish online** (GitHub) Projects from **previous classes** have been:

- Published as research papers
- Shared widely (some in the New York Times!)
- Released as successful open source projects

Why outbreaks like coronavirus spread exponentially, and how to "flatten the curve"

Harry Stevens, Washington Post 2020

Locations of each train on the red, blue, and orange lines at 5:13 am. Hover over the diagram to the right to display trains at a different time.

Trains are on the right side of the track relative to the direction they are moving.

See the morning rush-hour, midday lull, afternoon rush-hour, and the evening lull.

MBTA Viz Barry & Card

Service starts at 5AM on Monday morning. Each line represents the path of one train. Time continues downward, so steeper lines indicate slower trains.

Since the red line splits, we show the Ashmont branch first then the Braintree branch. Trains on the Braintree branch "jump over" the Ashmont branch.

Train frequency increases around 6:30AM as morning rush hour begins.

KEYBOARD WALKING

Passwords with a "keyboard walking" pattern start at an arbitrary key, then move in a direction (usually right or down) while continuing to hit keys. Sometimes this is combined with holding down the SHIFT key, so that some characters are uppercase or symbols to improve complexity.

While the generated password may seem to be random and unhackable, password crackers check for these keyboard patterns and guess them early on.

Many passwords in the leaked passwords dataset have a spatial pattern. Other than the numeric passwords like 123456, common keyboard walking offenders include qwerty and 1qaz@wsx.

Password: QwErTyAsDf				Guess time: 1 minute		
` 1 2	2 3	4 5	6 7 8	9 0	- = (
Q	WE	RT	–	I O P	I J V	
	S E	F G	i H J	K L :		
	z x	c v	BNI	м,.	1	

Semantic Passwords

Vishal Devireddy (CSE 512, Spring '21)

Questions?

Observable + Data Tutorial

Friday Oct. 1, 4:30-6pm on Zoom

Introduction to Observable notebooks, JavaScript basics, and data management and transformation, led by Firn & Yueqian.

Zoom link is available on Canvas. The tutorial will be recorded.

A1: Expository Visualization

Design a static visualization for a data set.

The climate of a place can have a tremendous impact on people's lived experience. You will examine average monthly climate measurements for six major U.S. cities, roughly covering the edges of the continental United States.

You must choose the message you want to convey. What question(s) do you want to answer? What insight do you want to communicate?

A1: Expository Visualization

Pick a guiding question, use it to title your vis.Design a static visualization for that question.You are free to use any tools (inc. pen & paper).

Deliverables (upload via Canvas; see A1 page) Image of your visualization (PNG or JPG format) Short description + design rationale (≤ 4 paragraphs)

Due by 11:59 pm, Monday October 11.