CSE 442 - Data Visualization

Scalable Visualization

Jeffrey Heer University of Washington
Varieties of “big data”...
Tall Data

Lots of records

Large DBs have petabytes or more

(but median DB still fits in RAM!)

How to manage?

Parallel data processing

Reduction: Filter, aggregate

Sample or approximate

Not just about systems. Consider perceptual / cognitive scalability.
<table>
<thead>
<tr>
<th>Tall Data</th>
<th>Wide data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lots of variables (100s-1000s...)
Select relevant subset
Dimensionality reduction
Statistical methods can suggest and order related variables
Requires human judgment
Tall Data

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wide Data

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diverse Data

- Database
- Graph
- Documents
Tall Data

Wide data

Diverse data
How can we visualize and interact with billion+ record databases in real-time?
Two Challenges:
1. Effective **visual encoding**
2. Real-time **interaction**
Perceptual and interactive scalability should be limited by the chosen resolution of the visualized data, not the number of records.
1. Visualizing Large Datasets
Data
Data

Sampling

Binning

Modeling
How to **Visualize** a Billion+ Records

Decouple the visual complexity from the raw data through aggregation.
Bin > Aggregate (> Smooth) > Plot

1. Bin Divide data domain into discrete “buckets”

Categories: Already discrete (but watch out for high cardinality)
Numbers: Choose bin intervals (uniform, quantile, ...)
Time: Choose time unit: Hour, Day, Month, etc.
Geo: Bin x, y coordinates after cartographic projection
Bin > Aggregate (> Smooth) > Plot

1. Bin Divide data domain into discrete “buckets”
Categories: Already discrete (but watch out for high cardinality)
Numbers: Choose bin intervals (uniform, quantile, ...)
Time: Choose time unit: Hour, Day, Month, etc.
Geo: Bin x, y coordinates after cartographic projection

2. Aggregate Count, Sum, Average, Min, Max, ...
Bin > Aggregate (> Smooth) > Plot

1. Bin Divide data domain into discrete “buckets”
 Categories: Already discrete (but watch out for high cardinality)
 Numbers: Choose bin intervals (uniform, quantile, ...)
 Time: Choose time unit: Hour, Day, Month, etc.
 Geo: Bin x, y coordinates after cartographic projection

2. Aggregate Count, Sum, Average, Min, Max, ...

(3. Smooth Optional: smooth aggregates [Wickham ‘13])
Bin > Aggregate (> Smooth) > Plot

1. Bin Divide data domain into discrete “buckets”
Categories: Already discrete (but watch out for high cardinality)
Numbers: Choose bin intervals (uniform, quantile, ...)
Time: Choose time unit: Hour, Day, Month, etc.
Geo: Bin x, y coordinates after cartographic projection

2. Aggregate Count, Sum, Average, Min, Max, ...

(3. Smooth Optional: smooth aggregates [Wickham ‘13])

4. Plot Visualize the aggregate values
Binned Plots by Data Type

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Numeric</th>
<th>Ordinal</th>
<th>Temporal</th>
<th>Geographic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>Histogram</td>
<td>Bar Chart</td>
<td>Line Graph/Area Chart</td>
<td>Choropleth Map</td>
</tr>
<tr>
<td>2D</td>
<td>Binned Scatter Plot</td>
<td>Heatmap</td>
<td>Temporal Heatmap</td>
<td>Geographic Heatmap</td>
</tr>
</tbody>
</table>
Design Subtleties...
Hexagonal or Rectangular Bins?

100,000 Data Points Hexagonal Bins Rectangular Bins

Hex bins better estimate density for 2D plots, but the improvement is marginal [Scott 92]. Rectangles support reuse and visual queries.
Color Scale: Discontinuity after Zero

Standard Color Ramp
Counts near zero are white.

Add Discontinuity after Zero
Counts near zero remain visible.
Color / Opacity Ramps

Linear interpolation in RGBA is not perceptually linear.

Perceptual color spaces approximate perceptual linearity.
Examples
Example: Binned SPLOM

Scatterplot Matrix Techniques for Large N

[Carr et al. ‘87]
Example: Basketball Shot Chart

NBA Shooting 2011-12
[Goldbergsby]
Example: Density Line Chart [Moritz & Fisher]

The non-normalized heatmap suffers from artifacts, seen as vertical stripes. Binned charts convey high points across the top, a collective dip in stocks during the crash of 2008, and two distinct bands of $25 and $15 stocks.
Example: Density Line Chart [Moritz & Fisher]

Time Series

Repeat for each series

Non-Normalized
Example: Density Line Chart

Time Series

Repeat for each series

Non-Normalized

Sum: 2 2 2 2 1 3 2 2 2 2
Example: Density Line Chart [Moritz & Fisher]

- **Time Series**
 - Value vs. Time

- **Repeat for each series**
 - Approx. Arc-Length Normalized

- **Non-Normalized**
 - Sum: 2 2 2 2 1 3 2 2 2 2

B.3

```
0 0 0 0 0 0.3 0 0 0 0
0 0 0 0 0.5 0.5 0.3 0.5 0.5 0.5
0.5 0.5 0.5 0 0 0 0.5 0.5 0.5
0.5 0.5 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
```
Example: Density Line Chart [Moritz & Fisher]

- **Time Series**
 - Approx. Arc-Length Normalized
 - Aggregate
 - Non-Normalized
- **Repeat for each series**
- **Color**
Example: Density Line Chart [Moritz & Fisher]

Example Time Series 10k Series, Normalized 10k Series, Non-Normalized

The density of the second group appears to increase to the right!
Without normalization, the steep lines are over-represented.
2. Enabling Real-Time Interaction
Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes
3. Prefetching
4. Approximation
Interactive Scalability Strategies

1. Query Database Offload to a scalable backend
 Tableau, for example, issues aggregation queries.
 Analytical databases are designed for fast, parallel execution.
 But round-trip queries to the DB may still be too slow…

2. Client-Side Indexing / Data Cubes

3. Prefetching

4. Approximation
Interactive Scalability Strategies

1. Query Database

2. Client-Side Indexing / Data Cubes Query data summaries
Build sorted indices or data cubes to quickly re-calculate aggregations as needed on the client.

3. Prefetching

4. Approximation
Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes
3. Prefetching Request data \textit{before} it is needed
 Reduce latency by speculatively querying for data before it is needed. Requires prediction models to guess what is needed.
4. Approximation
Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes
3. Prefetching
4. Approximation Give fast, approximate answers
 Reduce latency by computing aggregates on a sample, ideally
 with approximation bounds characterizing the error.
Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes
3. Prefetching
4. Approximation

These strategies are **not** mutually exclusive!
Systems can apply them in tandem.
imMens
[Liu, Jiang & Heer ‘13]

Strategies: Client-Side Data Cubes
Sampling Google Fusion Tables
Binned Aggregation
imMens

Sampling
Google Fusion Tables
5-D Data Cube

Month, Day, Hour, X, Y

~2.3B bins
5-D Data Cube
Month, Day, Hour, X, Y
~2.3B bins
Multivariate Data Tiles

1. Send data, not pixels
2. Embed multi-dim data
Full 5-D Cube
For any pair of 1D or 2D binned plots, the maximum number of dimensions needed to support brushing & linking is four.
Full 5-D Cube

Σ

Σ

Σ

Σ

13 3-D Data Tiles
Full 5-D Cube \[\Sigma \Sigma \Sigma \Sigma\] → \(~2.3\text{B bins}\)

13 3-D Data Tiles → \(~17.6\text{M bins}\) (in 352KB!)
Query & Render on GPU (WebGL)

Pre-compute tiles & send from server.
Bind data tiles as image textures.
Query & Render on GPU (WebGL)

Compute aggregation for each output bin. Executes in parallel on GPU.
Accumulate results in offscreen buffer. Render resulting plots in second pass.
Performance Benchmarks

Simulate interaction: brushing & linking across binned plots.

- 4x4 and 5x5 plots
- 10 to 50 bins

Measure time from selection to render.

Test setup:
2.3 GHz MacBook Pro
NVIDIA GeForce GT 650M
Google Chrome v.23.0
In-Memory Data Cube

~50fps querying of visual summaries of 1B data points.
Limitations and Questions

But where do the multivariate data tiles come from?
They must be provided by a backend server. This can be time-consuming, particularly if supporting deep levels of zooming. imMens assumes that tiles have either been pre-computed or that a backing database can suitably generate them on demand.

Does super-low-latency interaction really matter?
Is it worth it to go to all of this trouble?
How does interactive latency affect exploratory analysis with visualizations?

[Liu & Heer ‘14]
Prior Work

Higher latency entails higher action costs, subjects satisfice by selecting strategies that reduce short-term effort with no guarantee that the final outcome is optimized. [Gray & Boehm-Davis]
Prior Work

Higher latency entails higher action costs, subjects satisfice by selecting strategies that reduce short-term effort with no guarantee that the final outcome is optimized. [Gray & Boehm-Davis]

300ms latency reduces the number of Google searches; effect persists for days. [Brutlag et al]
Prior Work

Higher latency entails higher action costs, subjects satisfice by selecting strategies that reduce short-term effort with no guarantee that the final outcome is optimized. [Gray & Boehm-Davis]

300ms latency reduces the number of Google searches; effect persists for days. [Brutlag et al]

When the cost of acquiring information is increased, subjects change strategy and rely more on working memory. [Ballard et al]
Prior Work

Higher latency entails higher action costs, subjects satisfice by selecting strategies that reduce short-term effort with no guarantee that the final outcome is optimized. [Gray & Boehm-Davis]

When confronted with increased latencies, users resort to more mental planning, at times making fewer errors and performing better on tasks with verifiable outcomes. [O’Hara & Payne]
Prior Work

Higher latency entails higher action costs, subjects satisfice by selecting strategies that *reduce short-term effort* with no guarantee that the final outcome is optimized. [Gray & Boehm-Davis]

When confronted with increased latencies, users resort to more mental planning, at times making fewer errors and performing better on tasks with *verifiable outcomes*. [O’Hara & Payne]

But what about *open, exploratory analysis tasks*?
Experiment Design

2 (Latency) x 2 (Scenario) Design

Latency: +0ms / +500ms

Scenario: Mobile Check-ins / FAA Flight Delays

Exploratory Analysis Tasks (2 per session)

- imMens with brush, pan, zoom, adjust scales
- Users asked to explore data and share findings
- Log events, record audio and screen capture

16 subjects, all familiar with data analysis + vis
4.5m Mobile Check-Ins
140m FAA Flight Delay Records
Data Collection & Analysis

Event Log Analysis
Analyze triggered & processed user input events
Assess data set coverage (# unique tiles)

Verbal Protocol Analysis
Think-aloud protocol: verbalize thought process
Transcribe sessions; Code actions and insights
Analyze number and type of coded events
Latency Study Results

Higher latency leads to...
Latency Study Results

Higher latency leads to...
Reduced user activity and data set coverage
Latency Study Results

Higher latency leads to...
Reduced user activity and data set coverage
Significantly fewer brushing actions
Latency Study Results

Higher latency leads to...
Reduced user activity and data set coverage
Significantly fewer brushing actions
Less observation, generalization & hypothesis

<table>
<thead>
<tr>
<th>Verbal Category</th>
<th>likelihood-ratio test: ChiSq(1, N=32)</th>
<th>p value</th>
<th>significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>5.4812</td>
<td>0.01922</td>
<td>*</td>
</tr>
<tr>
<td>Observation (Single View)</td>
<td>1.5706</td>
<td>0.2101</td>
<td></td>
</tr>
<tr>
<td>Observation (Multiple Views)</td>
<td>3.3119</td>
<td>0.06878</td>
<td></td>
</tr>
<tr>
<td>Generalization</td>
<td>8.9763</td>
<td>0.002735</td>
<td>**</td>
</tr>
<tr>
<td>Generalization (Single View)</td>
<td>0.2641</td>
<td>0.6073</td>
<td></td>
</tr>
<tr>
<td>Generalization (Multiple Views)</td>
<td>8.5054</td>
<td>0.003541</td>
<td>**</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>8.3999</td>
<td>0.003752</td>
<td>**</td>
</tr>
<tr>
<td>Question</td>
<td>0.7416</td>
<td>0.3891</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>0.4651</td>
<td>0.4953</td>
<td></td>
</tr>
<tr>
<td>Recall</td>
<td>0.0202</td>
<td>0.8869</td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>0.6983</td>
<td>0.4033</td>
<td></td>
</tr>
</tbody>
</table>
Latency Study Results

Higher latency leads to...
Reduced user activity and data set coverage
Significantly fewer brushing actions
Less observation, generalization & hypothesis

Interaction effect: Exposure to delay reduces subsequent performance in low-latency interface.
Latency Study Results

Higher latency leads to...
Reduced user activity and data set coverage
Significantly fewer brushing actions
Less observation, generalization & hypothesis

Interaction effect: Exposure to delay reduces subsequent performance in low-latency interface.

Different interactions exhibit varied sensitivity to latency. Brushing is highly sensitive!
Latency Study Results

Higher latency leads to...
Reduced user activity and data set coverage
Significantly fewer brushing actions
Less observation, generalization & hypothesis

Interaction effect: Exposure to delay reduces subsequent performance in low-latency interface.

Different interactions exhibit varied sensitivity to latency. Brushing is highly sensitive!

In short: milliseconds matter! And imMens was not a waste of time… 😎
ForeCache

[Battle, Chang, & Stonebraker ’16]

Strategies: Query Database, Pre-Fetching
ForeCache is also a Data Tile-Based System

Manage a Cache of Tiles from DB

Example Tile-Based Views

- (a) Satellite Imagery
- (b) Multidimensional
- (c) Time Series (Heart rate Monitoring)
Key Idea: Model & Predict User Behavior

1. Classify Analysis Phase

Foraging: Searching for patterns of interest
Sensemaking: Closely examine a region-of-interest
Navigation: Transition between levels of detail

Train a machine learning classifier (SVM) to predict phase. The input data is the activity trace of user interactions.
Key Idea: Model & Predict User Behavior

1. Classify Analysis Phase

2. Apply Prediction Models

Actions-Based: Use recent interactions to predict next ones.

 You pan left twice; what is the probability you will do it again?

Signature-Based: Match to data characteristics of interest.

 What data tiles are visually similar to current focus tiles?

These models are weighted based on the analysis phase.

 Actions-Based for navigation. *Signature-Based for sensemaking*. Both applied equally for *foraging*.
Application: MODIS Satellite Data

Analyzing snow cover in a scientific database. ROI = Region of Interest

ForeCache improves latency:
- 430% better than current non-prefetching systems
- 88% better than existing prediction methods
Falcon
[Moritz, Howe, & Heer ’19]

Strategies: Query Database, Client-Side Data Cubes, Pre-Fetching
Falcon
uwdata.github.io/falcon
0.008% of the data
How does Falcon support fine-grained real-time interaction?
Falcon Interaction Log

- Brushing is more common and people are sensitive to latencies.
- Prioritize brushing latency over view switching latency.

5x speedup

View switch delay → distance
Key Idea:
User-centered prefetching and indexing to support all brushing interactions with one view. Re-compute if the user switches the view.
brushes in the precomputed view

serves requests from a data cube

brushes in the precomputed view

serves requests from a data cube

interacts with a new view

query for new data cubes
Constant data & time. Client only.

刷子在预计算视图中

serves requests from a data cube

💡 Aggregation decouples interactions from queries over the raw data.

Requires one pass over the data.

交互新视图

query for new data cubes

💡 View switches are rare and users are not as latency sensitive with them.
Visualization Systems that Leverage Data Cubes

Problem: The full data cube has size $\prod_{i} b_i$ where b_i is the number of bins in dimension i.
Visualization Systems that Leverage Data Cubes

Problem: The full data cube has size \(\prod_{i} b_i \) where \(b_i \) is the number of bins in dimension \(i \).

Nanocubes. Lins et al. *InfoVis 2013.*
Specialized hierarchical data structure for sparse cubes. Cubes are still too large for the browser. Hours of build time.

imMens. Liu et al. *Eurovis 2013.*
Dense cube. Decomposed into overlapping cubes. One cube per pairwise interactions. One brush. Brushing at bin resolution. Hours of build time.
Visualization Systems that Leverage Data Cubes

Problem: The full data cube has size \(\prod_{i} b_i \) where \(b_i \) is the number of bins in dimension \(i \).

Nanocubes. Lins et al. *InfoVis 2013.*
Specialized hierarchical data structure for sparse cubes.
Cubes are still too large for the browser. Hours of build time.

imMens. Liu et al. *Eurovis 2013.*
Dense cube. Decomposed into overlapping cubes.
One cube per pairwise interactions. One brush. Brushing at bin resolution. Hours of build time.

Falcon. Moritz et al. *CHI 2019.*
Small cubes for single active view.
Small cubes are built on the fly. View switches require new cube.
1.7 B stars.
1.2 TB of data.
Visualizations running in my browser.
Data stored in OmniSci database.
"With Falcon it feels like I'm really interacting with my data."

Data Platform Engineer at Stitch Fix
Trust, but Verify: Optimistic Vis

[Moritz, Fisher, Ding & Wang ‘17]

Strategies: Query Database, Approximation
What if data is too large to query in a reasonable time?
Latencies reduce engagement and lead to fewer observations.

Approximation: Trade Accuracy for Speed

Approximate query processing (AQP)
Uncertainty estimation in statistics
Uncertainty visualization
Probabilistic programming
Approximate hardware
Pick your poison:
1. Trust the approximation, or
2. Wait for everything to complete.
Optimistic Visualization

Trust but Verify
What if we think of the issues with approximation as user experience problems?
Optimistic Visualization

1. Analysts use initial estimates.
2. Precise queries run in the background.

Analysts can use approximations and also trust them.
Pangloss Implements Optimistic Visualization
Pangloss Visualizes Uncertainty
Pangloss shows a History of Previous Charts
In Pangloss, Analysts can Confirm results
Evaluation

Case studies with teams at Microsoft who brought in their own data.

Approximation works
“seeing something right away at first glimpse is really great”

Need for guarantees
“[with a competitor] I was willing to wait 70-80 seconds. It wasn’t ideally interactive, but it meant I was looking at all the data.”

Optimism works
“I was thinking what to do next— and I saw that it had loaded, so I went back and checked it . . . [the passive update is] very nice for not interrupting your workflow.”
In Conclusion...
Two Challenges:

1. Effective **visual encoding**
2. Real-time **interaction**
Perceptual and interactive scalability should be limited by the chosen resolution of the visualized data, not the number of records.
Bin > Aggregate (> Smooth) > Plot

1. Bin Divide data domain into discrete “buckets”

2. Aggregate Count, Sum, Average, Min, Max, ...

3. Smooth Optional: smooth aggregates [Wickham ’13]

4. Plot Visualize the aggregate values
Interactive Scalability Strategies

1. Query Database
2. Client-Side Indexing / Data Cubes
3. Prefetching
4. Approximation

These strategies are **not** mutually exclusive! Systems can apply them in tandem.
REMINDER

FP Prototypes Due Tonight (12/1)
Submit URL on Canvas!