CSE 440: Introduction to HCI
User Interface Design, Prototyping, and Evaluation

Lecture 12:
Human Performance

Tuesday / Thursday
12:00 to 1:20

James Fogarty
Kailey Chan
Dhruv Jain
Nigini Oliveira
Chris Seeds
Jihoon Suh
Project Status

It just keeps going forward

Looking Forward

3c: Usability Testing Check-In Due Friday 11/10
3d: Usability Testing Review Due Monday 11/13
3e: Digital Mockup Due Thursday 11/16

Other Assignments

Reading 4 Due Saturday 11/11, Sooner is Better
Reading 5 Can Be Done Anytime, Sooner is Better
Objectives

Be able to:

Describe an interaction in terms of a model, such as Norman's Execution-Evaluation Cycle or Buxton's 3-State Model

Describe properties of the human perceptual system that impact interaction

Use the Model Human Processor to describe simple human performance phenomena

Describe what Fitts's Law models, how terms in the model impact interaction, how the model can be used in low-level and higher-level interaction design

Describe the Gestalt perspective on human perception
These are Examples of What?

Popsicle-stick bridge

\[x = x_0 + v_0 t + \frac{1}{2} a t^2 \]

ACT-R

Goffman’s Negotiated Approach

Norman’s Execution-Evaluation Cycle
Models

We have said models describe phenomena, isolating components and allowing a closer look.

Today is a closer look at modeling humans.

- Capture essential pieces
 - Model should have what it needs but no more
 - Thus avoid underfitting or overfitting model

- Allow us to measure
 - Collect data, put in model, compare model terms

- Allow us to predict
 - The better the model, the better the predictions
Models of Interaction

Models of interaction allow a closer look

Define and describe an interaction
Isolate areas where problems occur
Design new interaction

Two examples at different scales

Norman’s Execution-Evaluation Cycle
Buxton’s 3-State Model
Models of Interaction

Models of interaction allow a closer look

- Define and describe an interaction
- Isolate areas where problems occur
- Design new interaction

Two examples at different scales

- Norman’s Execution-Evaluation Cycle
- Buxton’s 3-State Model

“All models are wrong, but some are useful”
George Box
Norman’s Execution-Evaluation Cycle

Gulf of Execution

Goals → Evaluate Goals
Form Intention → Interpret State
Develop Action Plan → Observe State
Execute Actions → System Change

Gulf of Evaluation
Buxton’s 3-State Model

Mouse

- State 1
 - Button up
 - Button Down
 - Tracking
 - Dragging

- State 2

Touchpad

- State 0
 - Release
 - Out of Range
 - Tracking

- State 1

Stylus

- State 0
 - Stylus Lift
 - Out of Range

- State 1
 - Tip Switch Open
 - Tracking

- State 2
 - Tip Switch Close
 - Dragging

Touch Screen

- State 0
 - Release Contact
 - Passive Tracking

- State 1
 - Contact

- State 2
 - Selection
Buxton’s 3-State Model

Mouse

Touchpad

Stylus

Touch Screen

Which can support tooltip previews?
Creating a Model

How would you go about creating a model?
Creating a Model

How would you go about creating a model?

One approach:

Observe, Collect Data, Find Patterns, Draw Analogies, Devise Model, Test Fit to Data, Test Predictions, Revise

Fundamentally an inductive process

From specific observations to broader generalization
Today

Some example models of human performance

Visual System
Model Human Processor
Fitts’s Law
Gestalt Principles

Biological Model
Higher-Level Model
Model by Analogy
Predict Interpretation
Human Visual System

Light passes through lens, focused on retina

Blind Spot?
Blind Spot

Use right eye, look at letters
Blind Spot

Use left eye, look at cross
Visible Spectrum
Retina

Covered with light-sensitive receptors

Rods (120 million)
- Sensitive to broad spectrum of light
- Sensitive to small amounts of light
- Cannot discriminate between colors
- Sense intensity or shades of gray
- Primarily for night vision & perceiving movement

Cones (6 million)
- Used to sense color
Retina

Center of retina has most of the ...
Retina

Center of retina has most of the cones

Allows for high acuity of objects focused at center
Retina

Center of retina has most of the cones
 Allows for high acuity of objects focused at center

Edge of retina is dominated by …
Retina

Center of retina has most of the cones
 Allows for high acuity of objects focused at center

Edge of retina is dominated by rods
 Allows detecting motion of threats in periphery
Retina

Center of retina has most of the cones
 Allows for high acuity of objects focused at center

Edge of retina is dominated by rods
 Allows detecting motion of threats in periphery

What does that mean for you?
Retina

Center of retina has most of the cones
 Allows for high acuity of objects focused at center

Edge of retina is dominated by rods
 Allows detecting motion of threats in periphery

What does that mean for you?
 Peripheral movement is easily distracting
Retina

Center of retina has most of the cones
 Allows for high acuity of objects focused at center

Edge of retina is dominated by rods
 Allows detecting motion of threats in periphery

What does that mean for you?
 Peripheral movement is easily distracting
Color Perception via Cones

Photopigments used to sense color

3 types: blue, green, “red” (actually yellow)

Each sensitive to different band of spectrum

Ratio of neural activity stimulation for the three types of gives us a continuous perception of color
Color Sensitivity
Distribution of Photopigments

Not distributed evenly
 Mainly reds (64%), Very few blues (4%)
 Insensitivity to short wavelengths (i.e., blue)

No blue cones in retina center
 Fixation on small blue object yields “disappearance”

Lens yellows with age, absorbs short wavelengths
 Sensitivity to blue is reduced even further
Color Sensitivity & Image Detection

Most sensitive to center of spectrum

- To be perceived as the same, blues and reds must be brighter than greens and yellows

Brightness determined mainly by red and green

\[Y = 0.3 \text{ Red} + 0.59 \text{ Green} + 0.11 \text{ Blue} \]

Shapes detected by finding edges

- We use brightness and color difference

Implication

- Blue edges and shapes are hard
Color Sensitivity & Image Detection

Most sensitive to center of spectrum

To be perceived as the same, blues and reds must be brighter than greens and yellows

Brightness determined mainly by red and green

\[Y = 0.3 \text{ Red} + 0.59 \text{ Green} + 0.11 \text{ Blue} \]

Shapes detected by finding edges

We use brightness and color difference

Implication

Blue edges and shapes are hard
Focus

Different wavelengths of light focused at different distances behind eye’s lens

Constant refocusing causes fatigue

Saturated colors (i.e., pure colors) require more focusing than desaturated (i.e., pastels)
Focus

Different wavelengths of light focused at different distances behind eye’s lens

Constant refocusing causes fatigue

Saturated colors (i.e., pure colors) require more focusing than desaturated (i.e., pastels)
Color Deficiency

Trouble discriminating colors

Affects about 9% of population

Two main types

Different photopigment response most common

Reduces capability to discern small color differences

Red-Green deficiency is best known

Lack of either green or red photopigment, cannot discriminate colors dependent on red and green

Also known as color blindness
Red-Green Deficiency Test
Dual / Redundant Encoding

Apples to Apples

Pandemic

http://danielsolisblog.blogspot.com/2011_03_01_archive.html
Add/Update Shipping Information

We found an error while verifying your shipping address.
We’ve marked the problem in red for you.

Update the address book of:

Required information is marked in GREEN CAPS.
HELP for questions about shipping.

<table>
<thead>
<tr>
<th>NICKNAME:</th>
<th>MYSELF</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST NAME:</td>
<td>DOUGLAS</td>
</tr>
<tr>
<td>LAST NAME:</td>
<td></td>
</tr>
<tr>
<td>ADDRESS:</td>
<td>246 SAN JOSE RD</td>
</tr>
<tr>
<td>CITY:</td>
<td>LOS GATOS</td>
</tr>
<tr>
<td>STATE/PROVINCE:</td>
<td>California</td>
</tr>
<tr>
<td>ZIP/POSTAL CODE:</td>
<td>95333</td>
</tr>
<tr>
<td>COUNTRY:</td>
<td>Select a country</td>
</tr>
<tr>
<td>SHIPPING METHOD:</td>
<td>In the U.S.: Standard UPS (2 business days plus)</td>
</tr>
</tbody>
</table>

HELP: Includes APO and FPO. Use "Other" if country is not USA or Canada.
HELP: Canada Canada Post (4-10 business days)
Today

Some example models of human performance

Visual System Biological Model
Model Human Processor Higher-Level Model
Fitts’s Law Model by Analogy
Gestalt Principles Predict Interpretation
The Model Human Processor

Developed by Card, Moran, & Newell (1983)

Based on empirical data

Summarizing human behavior in a manner easy to consume and act upon

Same book that named human computer interaction
The Model Human Processor

Long-term Memory

Working Memory

Visual Image Store

Auditory Image Store

Perceptual Processor

Motor Processor

Cognitive Processor

Sensory Buffers

Eyes

Ears

Fingers, etc.
Basics of Model Human Processor

Sometimes serial, sometimes parallel

Serial in action and parallel in recognition
Pressing key in response to light
Driving, reading signs, hearing all simultaneously

Parameters
Processors have cycle time, about 100-200ms
Memories have capacity, decay time, and type
A Working Memory Experiment
Memory

Working memory (also known as short-term)

Small capacity (7 ± 2 “chunks”)

6174591765 vs. (617) 459-1765

IBMCIACSE vs. IBM CIA CSE

Rapid access (~ 70ms) and decay (~200 ms)

Pass to LTM after a few seconds of continued storage

Long-term memory

Huge (if not “unlimited”)

Slower access time (~100 ms) with little decay
Activation Experiment

Volunteer
Activation Experiment

Volunteer

Start saying colors you see in list of words
 When slide comes up, as fast as you can
 There will be three columns of words

Say “done” when finished
 Everyone else time how long it takes
Activation Experiment

<table>
<thead>
<tr>
<th>word</th>
<th>word</th>
<th>word</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
<td>word</td>
<td>word</td>
</tr>
</tbody>
</table>
Activation Experiment

Volunteer
<table>
<thead>
<tr>
<th>red</th>
<th>green</th>
<th>blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>yellow</td>
<td>yellow</td>
<td>red</td>
</tr>
<tr>
<td>blue</td>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>green</td>
<td>yellow</td>
<td>red</td>
</tr>
<tr>
<td>red</td>
<td>green</td>
<td>green</td>
</tr>
</tbody>
</table>
Activation Experiment

Do it again

Say “done” when finished
Activation Experiment

Do it again

Say “done” when finished
<table>
<thead>
<tr>
<th>red</th>
<th>red</th>
<th>green</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>yellow</td>
<td>red</td>
</tr>
<tr>
<td>green</td>
<td>green</td>
<td>green</td>
</tr>
<tr>
<td>yellow</td>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>blue</td>
<td>yellow</td>
<td>yellow</td>
</tr>
</tbody>
</table>
Model Human Processor Operation

Recognize-Act Cycle of the Cognitive Processor
On each cycle, contents in working memory initiate actions associatively linked in long-term memory
Actions modify the contents of working memory

Discrimination Principle
Retrieval is determined by candidates that exist in memory relative to retrieval cues
Interference created by strongly activated chunks

See also Freudian slips
Perceptual Causality

How soon must the red ball move after cue ball collides with it?
Perceptual Causality

Stimuli that occur within one cycle of the perceptual processor fuse into a single concept.

Requirement

If you want to create the perception of causality, then you need to be sufficiently responsive.

Caution

Two stimuli intended to be distinct can fuse if the first event appears to cause the other.
Today

Some example models of human performance

Visual System
Model Human Processor
Fitts’s Law
Gestalt Principles

Biological Model
Higher-Level Model
Model by Analogy
Predict Interpretation
Fitts’s Law (1954)

Models time to acquire targets in aimed movement

- Reaching for a control in a cockpit
- Moving across a dashboard
- Pulling defective items from a conveyor belt
- Clicking on icons using a mouse

Very powerful, widely used

- Holds for many circumstances (e.g., under water)
- Allows for comparison among different experiments
- Used both to measure and to predict
Fitts’s Law (1954)

Models time to acquire targets in aimed movement

- Reaching for a control in a cockpit
- Moving across a dashboard
- Pulling defective items from a conveyor belt
- Clicking on icons using a mouse

Very powerful, widely used

- Holds for many circumstances (e.g., under water)
- Allows for comparison among different experiments
- Used both to measure and to predict

James’s use of ‘s is correct, but most people say Fitts’ Law
Fitts’s Law (1954)

Models time to acquire targets in aimed movement

- Reaching for a control in a cockpit
- Moving across a dashboard
- Pulling defective items from a conveyor belt
- Clicking on icons using a mouse

Very powerful, widely used

- Holds for many circumstances (e.g., under water)
- Allows for comparison among different experiments
- Used both to measure and to predict

https://en.wikipedia.org/wiki/Fitts's_law
Reciprocal Point-Select Task

Width

Amplitude
Closed Loop versus Open Loop

What is closed loop motion?

What is open loop motion?
Closed Loop versus Open Loop

What is closed loop motion?
- Rapid aimed movements with feedback correction
- Fitts’s law models this

What is open loop motion?
- Ballistic movements without feedback correction
- Example: Throwing a dart
- See Schmidt’s Law (1979)
Model by Analogy

Analogy to Information Transmission
Shannon and Weaver, 1959
Model by Analogy

Analogy to Information Transmission
Shannon and Weaver, 1959
Fitts’s Law

\[MT = a + b \log_2(A / W + 1) \]

What kind of equation does this remind you of?
Fitts’s Law

MT = a + b log2(A / W + 1)

What kind of equation does this remind you of?

y = mx + b

MT = a + bx, where x = log2(A / W + 1)

x is called the Index of Difficulty (ID)
As “A” goes up, ID goes up
As “W” goes up, ID goes down
Index of Difficulty (ID)

\[\log_2\left(\frac{A}{W} + 1 \right) \]

Fitts’s Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance (A) to target width (W)

Why is it significant that it is a ratio?
Index of Difficulty (ID)

\[\log_2(A / W + 1) \]

Fitts’s Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance (A) to target width (W)

Why is it significant that it is a ratio?

Units of A and W don’t matter
Allows comparison across experiments
Index of Difficulty (ID)

\[\log_2\left(\frac{A}{W} + 1\right) \]

Fitts’s Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance (A) to target width (W)

ID units typically in “bits”

Because of association with information capacity and somewhat arbitrary use of base-2 logarithm
Index of Performance (IP)

MT = a + b \log_2(A / W + 1)

b is slope

1/b is called Index of Performance (IP)

If MT is in seconds, IP is in bits/second

Also called “throughput” or “bandwidth”

Consistent with analogy of the interaction as an information channel from human to target
A Fitts’s Law Experiment
Experimental Design and Analysis

Factorial Design

Experiment with more than one manipulation

Within vs. Between Participant Design

Statistical power versus potential confounds

Carryover Effects and Counterbalanced Designs

![Latin Square Design]

https://depts.washington.edu/aimgroup/proj/ps4hci/
"Beating" Fitts’s law

It is the law, right?

\[MT = a + b \log_2(A / W + 1) \]

So how can we reduce movement time?

Reduce A
Increase W
Fitts’s Law Related Techniques

Put targets closer together

Make targets bigger

Make cursor bigger
 - Area cursors
 - Bubble cursor

Use impenetrable edges
Fitts’s Law Examples

Which will be faster on average?

Pop-up Linear Menu

- Today
- Sunday
- Monday
- Tuesday
- Wednesday
- Thursday
- Friday
- Saturday

Pop-up Pie Menu
Pie Menus in Use

The Sims

Rainbow 6

Maya
Fitts’s Law Examples

Which will be faster on average?

Pop-up Linear Menu

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Today</td>
</tr>
<tr>
<td>Sunday</td>
</tr>
<tr>
<td>Monday</td>
</tr>
<tr>
<td>Tuesday</td>
</tr>
<tr>
<td>Wednesday</td>
</tr>
<tr>
<td>Thursday</td>
</tr>
<tr>
<td>Friday</td>
</tr>
<tr>
<td>Saturday</td>
</tr>
</tbody>
</table>

Pop-up Pie Menu

What about adaptive menus?
Fitts’s Law in Windowing

Windows 95: Missed by a pixel
Windows XP: Good to the last drop

Macintosh Menu
Fitts’s Law in MS Office 2007

Larger, labeled controls can be clicked more quickly

Mini toolbar is close to the cursor

Magic Corner: Office Button in the upper-left corner
Bubble Cursor

Grossman and Balakrishnan, 2005
Bubble Cursor with Prefab

Dixon et al, 2012
Bubble Cursor with Prefab

Dixon et al, 2012
Fitts’s Law and Keyboard Layout

Zhai et. al (2002) pose stylus keyboard layout as an optimization of all key pairs, weighted by language frequency.

\[MT = a + b \log_2 \left(\frac{D_{ij}}{W_j} + 1 \right), \]

\[t = \sum_{i=1}^{27} \sum_{j=1}^{27} \frac{P_{ij}}{IP} \left[\log_2 \left(\frac{D_{ij}}{W_j} + 1 \right) \right], \]
Hooke’s Keyboard

Optimizes a system of springs
Metropolis Keyboard

Random walk minimizing scoring function
Considering Multiple Space Keys

FITALY Keyboard
Textware Solutions

OPTI Keyboard
MacKenzie and Zhang 1999
Considering Multiple Space Keys

FITALY Keyboard
Textware Solutions

<table>
<thead>
<tr>
<th>Z</th>
<th>V</th>
<th>C</th>
<th>H</th>
<th>W</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>I</td>
<td>T</td>
<td>A</td>
<td>L</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>D</td>
<td>O</td>
<td>R</td>
<td>S</td>
<td>B</td>
</tr>
<tr>
<td>Q</td>
<td>J</td>
<td>U</td>
<td>M</td>
<td>P</td>
<td>X</td>
</tr>
</tbody>
</table>

OPTI Keyboard
MacKenzie and Zhang 1999

Correct choice of space key becomes important
Requires planning head to be optimal
ATOMIK Keyboard

Optimized keyboard, adjusted for early letters in upper left and later letters in lower right
Using Motor Ability in Design

Pointing

Dragging

List Selection

Gajos et al 2007
Interface Generation As Optimization

\[$\text{Estimated task completion time} = $ \]
Manufacturer Interface
Person with Cerebral Palsy

<table>
<thead>
<tr>
<th>Font Style and Size</th>
<th>Arial</th>
<th>Regular</th>
<th>8</th>
<th>Underline Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font</td>
<td>Arial</td>
<td>Italic</td>
<td>9</td>
<td>Single solid</td>
</tr>
<tr>
<td></td>
<td>Arial Black</td>
<td>Bold</td>
<td>10</td>
<td>Double solid</td>
</tr>
<tr>
<td></td>
<td>Comic Sans MS</td>
<td>Bold Italic</td>
<td>11</td>
<td>Dotted</td>
</tr>
<tr>
<td></td>
<td>Courier New</td>
<td>Bold Italic</td>
<td>12</td>
<td>Dashed</td>
</tr>
<tr>
<td></td>
<td>Franklin Gothic Medium</td>
<td>13</td>
<td>Wavy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Italic</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gautami</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Georgia</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helvetica</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latha</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lucida Console</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lucida Sans Unicode</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microsoft Sans Serif</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modern MS Sans Serif</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS Serif</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myriad</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palatino Linotype</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roman</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Script</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small Fonts</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Font Preview

Times New Roman
Person with Muscular Dystrophy
Interface Generation As Optimization

In a study with 11 participants with diverse motor impairments:

- Consistently faster with generated interfaces (26%)
- Fewer errors with generated interfaces (73% fewer)
- Strongly preferred generated interfaces
Fitts’s Law Related Techniques

Gravity Fields
 Pointer gets close, gets “sucked in” to target

Sticky Icons
 When within target, pointer “sticks”

Constrained Motion
 Snapping, holding Shift to limit degrees of movement

Target Prediction
 Determine likely target, move it nearer or expand it
Fitts’s Law, Edge Targets, and Touch
Avrahami finds edge targets are actually slower with touch devices, at same physical location.
Today

Some example models of human performance

- Visual System
- Model Human Processor
- Fitts’s Law
- Gestalt Principles
- Biological Model
- Higher-Level Model
- Model by Analogy
- Predict Interpretation
Gestalt Psychology

Described loosely in the context of this lecture and associated work, not a real definition

Perception is neither bottom-up nor top-down, rather both inform the other as a whole
Gestalt Psychology

You can still see the dog…
Gestalt Psychology

You can still see the dog...
Spinning Wheel

Follow the red dots vs follow the yellow dots
Blind Spot Interpolation

Use right eye, look at letters
Painful Image Warning
Difficult to Reconcile
Proximity

Objects close to each other form a group

[Diagram of objects forming a group]
Proximity

Using Lies in Research
By Nate Bolt • March 8, 2011
While it might be an uncomfortable topic, uncovering the lies behind a product or interface can be one of the most effective ways to turn ailing projects around.
Read More

Considerations for Mobile Design (Part 2): Dimensions
By David Leggett • March 1, 2011
In part two of this series, David helps readers adapt their design regimes to the (typically) small screens of mobile devices. Using responsive design, our experiences adapt to a variety of conditions.
Read More

A Simple, Usable Review
By Paul Seys • February 24, 2011
In this detailed review, Paul Seys describes an up-and-coming UX title that's jam-packed with lessons for designers both new and established. Follow along to learn how author Giles Colborne’s teaches his readers the essence of great design.
Read More
1. Tell us about yourself...
- My Name: First Name Owoh
- Gender: - Select One -
- Birthday: - Select Month - Day Year
- I live in: United States
- Postal Code:

2. Select an ID and password
- Yahoo! ID and Email: @ yahoo.com
- Password
- Re-type Password

3. In case you forget your ID or password...
- Alternate Email
- 1.Security Question: - Select One -
- Your Answer
- 2.Security Question: - Select One -
- Your Answer
Similarity

Objects that are similar form a group
Similarity
Proximity and Similarity
Proximity and Similarity

After discovering that one of these accesses a menu, people will expect they all access a menu. They are the same.
Closure

Even incomplete objects are perceived as whole

Increases regularity of stimuli
Closure

The Sims

Rainbow 6
Symmetry

Objects are perceived as symmetrical and forming around a center point.

If you fight symmetry, be sure you have a reason.
Continuity

Objects perceived as grouped when they align

Remain distinct even with overlap

Preferred over abrupt directional changes

what most people see

not this
Continuity
Models from Different Perspectives

Some example models of human performance

Visual System
Model Human Processor
Fitts’s Law
Gestalt Principles

Biological Model
Higher-Level Model
Model by Analogy
Predict Interpretation
CSE 440: Introduction to HCI
User Interface Design, Prototyping, and Evaluation

Lecture 12:
Human Performance

Tuesday / Thursday
12:00 to 1:20

James Fogarty
Kailey Chan
Dhruv Jain
Nigini Oliveira
Chris Seeds
Jihoon Suh