CSE 440: Introduction to HCI

User Interface Design, Prototyping, and Evaluation

Lecture 15: James Fogarty

Interface Implementation Alex Fiannaca
Lauren Milne
Saba Kawas

Kelsey Munsell

Tuesday/Thursday
12:00to 1:20

Today

Exam Q&A Time and Place
Comments on Mockups

A Story About Art
Comments on Presentations

Understanding Tools and Interfaces

Fogarty Adventures in Bad Visuals

Needed to Present for UW Innovation Award
Needed a storyboard, but am visually inept

First experience with oDesk/Upwork

Initial Specification

Guidance on Desired Style

Version 1

Version 2

Version 3

Final Version

Two Storyboards

Before Our Advances
After Our Advances

Three Iterations
Less Than Three Hours Time
Approximately $300

Before

Before

Before

Before

Before

After

After

After

After

After

Fogarty Adventures in Bad Visuals

Needed to Present for UW Innovation Award
Needed a storyboard, but am visually inept
First experience with oDesk/Upwork
Presentation matters

In the real world, you can spend money on this

Today

Exam Q&A Time and Place
Comments on Mockups

A Story About Art
Comments on Presentations

Understanding Tools and Interfaces

Overall Message

Happy with talks, especially on Friday

Prep, Calibration, Environment
Want everybody to keep improving

Room to improve in relating elements of your
work, referring to reasons for design decisions

Timing

“An 8 minute time limit will be strictly enforced”

7:40 10:00
3:30 10ish
3:45 10:15
9:00 11:00
9:00 11:45

9:45 13:00

Distracting
Background

Star People!
Hard to Follow

Pointing

Easier to Follow
Size / Clutter

Focus on the
Right Thing

One person still uses food journaling consistently
and has a positive experience.

One person stopped food journaling because she
reached her goal and had a nutritionist.

The third person loves taking pictures of her food
and just seeing what she’s been eating.

Had them take us through their process during
mealtime, motivations, difficult, benefits

Image
Contrast
and Scale

Shadows

Artificially
Increase
Contrast

Background

Background

Many Screens
on One Slide

Many Screens
on One Slide

Fewer Screens,
Show Connections

Fewer Screens,
Show Connections

Highlighting

Highlighting

Highlighting

Highlighting

Highlighting

Highlighting

Transition
as Animation

Transition
as Animation

Transition
as Animation

Transition
as Animation

Transition
as Animation

Transition
as Animation

VIEWPROGRESS Interface

Animation

o

LUNCH -$5.49
COFFEE -$3.49
MOVIES -$11.20
COFFEE -$3.89
ICE CREAM -$4.42
DINNER -$7.79
COFFEE -$4.89
BOWLING -$10.20
KIT KAT -$0.99
BRUNCH -$11.42
BEER -$4.00

Today

Exam Q&A Time and Place
Comments on Mockups

A Story About Art
Comments on Presentations

Understanding Tools and Interfaces

Tools and Interfaces

Why Interface Tools?

Case Study of Model-View-Controller
Case Study of Animation
Sapir-Whorf Hypothesis
Thoughtfulness in Tools

Sequential Programs

Program takes control, prompts for input

Person waits
on the program

Program says when
it is ready for more
input, which the
person then provides

Sequential Programs

while true {
print “Prompt for Input”
input = read line of text()
output = do_work()
print output

Person is literally modeled as a file

Event-Driven Programming

A program waits for a person to provide input

All communication done via events

7 7«

“mouse down”, “item drag”, “key up”

All events go to a queue Mouse Software

Ensures events handled in order Keyboard Software

Hides specifics from applications l
v Event Queue

Basic Interactive Software Loop

do {
e = read _event(); }-inmﬂ
dispatch_event(e); } processing
if (damage _exists())
. } output
update display();
} while (e.type != WM QUIT);

Nearly all interactive software has this somewhere

Basic Interactive Software Loop

Have you ever written this loop?

Basic Interactive Software Loop

Have you ever written this loop?

Contrast with:

“One of the most complex aspects of Xlib
programming is designing the event loop, which
must take into account all of the possible events
that can occur in a window.”

Nye & O'Reilly, X Toolkit Intrinsics
Programming Manual, vol. 4, 1990, p. 241.

Understanding Tools

We use tools because they
ldentify common or important practices

Pac
Ma
Ma

What

kage those practices in a framework
e it easy to follow those practices

ke it easier to focus on our application

are the benefits of this?

Understanding Tools

We use tools because they
ldentify common or important practices

Pac
Ma
Ma

What

kage those practices in a framework
e it easy to follow those practices

ke it easier to focus on our application

are the benefits of this?

Being faster allows more iterative design
Implementation is generally better in the tool
Consistency across applications using same tool

Understanding Tools

Why is designing tools difficult?
Need to understand the core practices and problems
Those are often evolving with technology and design

Example: Responsiveness in event-driven interface

Event-driven interaction is asynchronous

How to maintain responsiveness in the interface
while executing some large computation?

Understanding Tools

Why is designing tools difficult?
Need to understand the core practices and problems
Those are often evolving with technology and design

Example: Responsiveness in event-driven interface
Cursor:
WaitCursor vs. CWaitCursor vs. In Framework

Progress Bar:
Data Races vs. Idle vs. Loop vs. Worker Objects

Fundamental Tools Terminology

Threshold vs. Ceiling
Threshold: How hard to get started
Ceiling: How much can be achieved
These depend on what is being implemented

Path of Least Resistance

Tools influence what interfaces are created

Moving Targets

Changing needs make tools incomplete or obsolete

Myers et al, 2000
http://dx.doi.org/10.1145/344949.344959

http://dx.doi.org/10.1145/344949.344959

Tools and Interfaces

Why Interface Tools?

Case Study of Model-View-Controller
Case Study of Animation
Sapir-Whorf Hypothesis
Thoughtfulness in Tools

Model-View-Controller

How to organize the code of an interface?

This is a surprisingly complicated question,
with many unstated assumptions requiring
significant background to understand and resolve

o Buxton, 1983
Se e h e I m M O d e | http://dx.doi.org/10.1145/988584.988586

Results from 1985 workshop on user interface
management systems, driven by goals of
portability and modifiability, based in separating
the interface from application functionality

Huh?

http://dx.doi.org/10.1145/988584.988586

Seeheim Model

Lexical - Presentation

External presentation of interface eg., “add” vs. “append” vs. “ra” vs.

Generates the display, receive input ee. howto makea “menu” or “button”

Syntactic - Dialog Control
Parsing of tokens into syntax e.g., interface modes
Maintain state

Semantic - Application Interface Model

Defines interaction between e.g., drag-and-drop target highlighting
interface and rest of software

Seeheim Model

Seeheim Model

O

Huh?

Seeheim Model

Rapid Semantic Feedback

In practice, all of the code goes in here

Model-View-Controller

Introduced by Smalltalk developers at PARC
Partitions application to be scalable, maintainable

. ——
i S . W

"
Model l I
’\/\/\

Controller j~——

View / Controller Relationship

In theory:

Pattern of behavior in response to input events
(i.e., concerns of the controller) are independent
of visual geometry (i.e., concerns of the view)

Controller contacts view to interpret what input
events mean in context of a view (e.g., selection)

View / Controller Relationship

In practice:

View and controller often tightly intertwined,
almost always occur in matched pairs

Many architectures combine into a single class

.y

—
Controller

— g
v \/

Model-View-Controller

MVC separates concerns and scales better than
global variables or putting everything together

Separation eases maintenance

Can add new fields to model,
new views can leverage, old views will still work

Can replace model without changing views

Separation of “business logic” can require care
May help to think of model as the client model

Model-View-Collection on the Web

Core ideas manifest differently according to needs

For example, backbone.js implements client views of
models, with REST API calls to web server

Web tools often implement views as templates

/E""“@ /\/E

Web m |
View
Server

_/‘\ —~
\/

Model View View-Model

Design to support data-binding
by minimizing functionality in view

Also allows greater separation of expertise

Daa Binding and i ‘Se,nd Nohficadions

Ceommands

Uiﬁwlmc}dﬁi ’UMMD&CJH Me
) | ;
Dpcm-lmm

\ ‘.»t'.ﬁd NodiFica ons _ ’

--——#".

Tools and Interfaces

Why Interface Tools?

Case Study of Model-View-Controller
Case Study of Animation
Sapir-Whorf Hypothesis
Thoughtfulness in Tools

Luxor Jr.

Luxor Jr.

Animation Case Study

Principles of Traditional
Animation Applied to
3D Computer Animation

Lasseter, 1987

http://dx.doi.org/10.1145/37402.37407

@ ® Compater Graphics, Volume 21, Number 4, July 1987

PRINCIPLES OF TRADITIONAL ANIMATION
APPLIED TO 3D COMPUTER ANIMATION

John Lasserer
Pixar

San Ratael
California

“There is no particlar mysiery in animanion... ii's reaily very simple, and
ke anything thal is sivple, & b about che hardest thing in the world to
edo.” Bill Tyda at the Wall Disncy Suidia, June 28, 1037, [14]

ABSTRACT

This pager describes e DASic princiglcs of raditional 2D busl drawn

Afier doscribing

how trese prlnciples evolved, the individual prisciples are detailcd,

sckdressing: beic meanings in 20 hand deawn animation aud their spplication

10 3D computer animation, This should demsmsuraie the wporiance of

hese principles to quality 37 computor arimation.

R Casegories and Subject Descriptors:

13.6 Compuler Graphics : Methodelogy and Techniques - Tnwraction
Ioehmiguss;

137 Cﬂm.mazr Gmpiuc: Theez-dimensional Graphics oo Realism -

15 Cﬁmpmtr J;urfl(‘aﬂbﬂs Arts and Humanitics - Afts, fine and
‘pecforming

General Tenms: Design, Human Factors

Additional Keywords amd Phuasss: Animation Principles, Keyframe
Animation, Squush and Strewch, Luso I,

INTRGDUCTION

Ealy rescarch in computer animstion developed 2D animation Lechniques
bosed on traditional animation. [7] Teshulgues such as soryboarding [hL].
keyframe animation, [4.5) inbewwoening, [16,22] scan/paint, and multiplane
buckgounds [17] aliempied [0 apply the col animation process to the
cemputar. As 3D eampuier animation eestarch matured, more: resources
wese devoled 10 imags rendering than b animation. Borsuse 3D compuzer
umm:llloﬂ uses 313 models instcad of 2D drawings, fower teeliniguss from

i e Early teans werc script
bwz 161, folows by a few spling-interpalated keyframe systems, 2] But
shose sysiems were dovelopod by compunies for intemael use, and so very
Jow traditionally trained wnimalors found their way imo 3T compater
ammation.

"Luzo” is a tradomark of Tar: Jacebsen Industries AS.

Permuission 1o capy without fes all o part of this oaterial s granced
rgvideed it e copics are pat niade or diteisured foe direct
commersial advantags, the ACM copyright nolice and Uhe Lile of the
sublication and ics date appear, and notice is given that capying is by
prrmission of 1he Asseciation for Comprting Muchinery. To cupy
Githerwiss, or o rpublish, requires a fes andjor specifi permissium,

® 1987 ACM-0B9791-207-4

S00.75

The last twos years have seea the appearance of relisble, vser frivadly,
keylrame animation sysiems from such companics ss Wavelronl
Teshnalogies Inc., (23] Aliss Rossurch inc , 2] Abel Tmupe Rescarch (RIP},
[1] Veruga Systems Inc., [26) Symbotics Iuc., [25] and others, Thase
spstams will cnubla people 10 produce mome high quality computer
animation. Lhest Sysieans will o people t produce
more bad cnmpnhrrammalmn

Much of this bad animation will be duc to wafsmiliarity with the
funtamental principles (:at kave bon used for hand drawn charocter
animation for o 5 yees, Undorsandin thise primiales o ruions
animation ix essential 1 pruduciog pocd compuice animation, Such an
Ui shou alis b mpara fo T desgner o he Syt e
by (hese animatars.

In this puper, T will eaplain the fundamenal principlcs of tradivionsd
AT 1 b tho gy 0 30 Keyfeims e ot

2. PRINCIPLES OF ANIMATIGN

Bercees e o 19205 and s ke 1930 arimatoe e from ancvely
12 81 an Sorm at the Walt Dismcy With cucry piotie, sctions
, and ;hw.m

Aaliences were enthusiostic 2 many of the fbmalors wer: satisfied,

hinever it was elear 10 Watt Disncy that the level of gnimation and axisting.
chatacters were nod adequals (3 TIrsue new slory lines-- characlers were
Tinited 10 cerizin Lypes of action and, sudizace aceeplance nowitbstanding,
ey were ot appealing o the eve. 1 was apparent w Wl Disney that oo
oht could successlully atimate 2 hutaanized (ynir & hile-Like aaimal; &
new drawing approach veus nocessary 40 inpruve ihe level of animation
cxcmplified by the Three Liulc Pigs . (18]

TIGURT 1. Luxo Jrs hop with overlipping action on eord. Flip pages
from last page of puper o front. The op Tigwres are frames 1-5, the batiom
e frames 6- 10

http://dx.doi.org/10.1145/37402.37407

Squash and Stretch

Squash and Stretch

Squash and Stretch
s

FIGURE 4a. In slow action, an object's position
overlaps from frame to frame which gives the
action a smooth appearance to the eye.,

FIGURE 4b. Strobing occurs in a faster action
when the object’s positions do not overlap and
the eye perceives seperate images.

FIGURE 4¢, Suretching the object so that if's positions
overlap again will relieve the strobing effect.

Timing

Just rwo drawings of a head, the first showing it leaning toward the right
shoulder and the second with it over on the left and its chin slightly raised,
can be made to communicate a mudiitie of ideas, depending entirely on the

Timing used. Each inbetween drawing added between these two "extremes”™
gives a new meaning (o the action.

NGO inberweens........... The Character has been hit by a tremendous force.
His head is nearily snapped off.

ONE inbetweens......... The Character har been hit by a brick, rolling pin,
frying pan.

TWO inbetweens......... The Character has a nervous tic, a muscle spasm,
an unaconirollable mwitch,

THREE inbetweens..... The Character ix dodging a brick, rolling pin,
frying pan.

Timing

FOUR inbetweens........... The Character iz giving a crisp order, "(ref
going!” "Move it!"

FIVE inberweens........... The Characier {5 more friendly, "Over here.”
“Come on-hurry!"

SIX inbetweens........... The Character sees a good looking girl, or the
sporis car he has always wanted.
SEVEN inbetweens........... The Characier tries 1o get a better look ar

something .

Timing

EIGHT inbetweens........... The Character searches for the peanut burter on
the kiichen shelf.

NINE inbeitweens..........The Character appraises, considering thoughifully.

TEN inbetweens........... The Character streiches a sore muscle.

Anticipation

Staging

Staging

Follow Through, Overlap, Secondary

Pose-to-Pose, Slow In, Slow Out

EXTREME

FIGURE %. Timing chart for ball bounce.

Objects with mass must accelerate and decelerate

Interesting frames are typically at ends,
tweaks perception to emphasize these poses

Luxor Jr.

Luxor Jr.

Animation Case Study

Animation: From Cartoons
to the User Interface

Chang and Ungar, 1993

http://dx.doi.org/10.1145/168642.168647

Animation:
From Cartoons to the User Interface

Bay-Wei Chang

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

bay@self.stanford.edn

You must learn to vespect that golden awom, that
single frame of uction, shat 1/24th of o second,
because the difference between Hghining and the
lightning bug may hinge on that single frame.

— Chuck Jones (101

ABSTRACT
User interfaces arc often based on static prescatations, &
‘model ill suited for cl CVEnts

David Ungar

Sun Microsystemns Laboratories, Inc.
2550 Garcia Avenue
Mountain Yiew, CA 94043

david.ungar@sun.com

these tableaux, bmhsnwuxhusswcnwumhmnhms
between them. Visual changes in the user interface are
sudden and ofien unexpected, surprising usess and forcing
them to mentaily step away from their task in erder to
grapple with understanding what is happening in the
interface ilself,

‘When the user cannot visually track the changes occurring.
in the interface, the czusal connection between the old state:
of the screen and the new state of the screen is not

on the screen frequently startle and confuse users. Cartoon
animation, in contrast, i3 exceedingly successful at engaging
its audience; even the most bizarre events are easily
comprehended. The S:lf user mt:rfm;e :cnr:d asu
testbed for the of carioon

as 2 means of making the interface easier to understand and
mere pleasant (o yse. Anenticn © dming and ranslent detail
allows Self objects to move solidly. Use of canmn-nyh
motion blur allows Self objects to move quickly and still
maintain their comprehensibility, Self objuu arrive and
depart without sudden ions and
disappearances, and they rise to the front of overlapping
objects smoothly through the use of dissolve. Anticipating
motion with a small contrary motion and pacing the middle
of trangitiong faster than the endpoinzs results in smoother
and ¢learer movements, Despite the differences between
wser injerfaces and cartoons—cartoond are frivolous,
passive enterzainment and user inzerfaces are serious,
interactive tocls—cartoon gnimation has much to lend to
user interfaces 1o realize both affective and cognitive
benefits,

KEYWORDS: animation, user interfaces, cartoons, motion
blur, Self
1 INTRODUCTION

User interfaces are often based on static presentations—a
series of displays each showing & new state of the system.
Typically, there is much design that goes into the details of

Parmission to copy without fes all or part of this metersal is
Braaked BravidE I U GORIES are 9T Made or sstlwien for
dire ol commaraisl advamago, the ACM Bapyiiht nouce and the
iitko of tho publicatis

on and its dats 8
iv by parmission of un

Te copy other
&ndfor spasific parmission.

¥ 1883 ACM 0-89731-628-X/93/0011...51,50

diacly clear. How are the objects now on the screen
related to the ones which were there a moment ago? Are
they the same objects, or have they been replaced by
different objects? What changes are directly related to the
user's actions, and which are incidental? To be able to
efficiently and reliably interpret what has happened when
the screen changes state, the user mast be prepared with an
expectation of what the screen will ook like after the action.
In the case of most interactions in unanimated interfaccs,
this expectation can oaly come by experience; little in the
interface or the action gives the user a clue about what will
‘happen, what is happening, or what just happened.
For example, the Microsoft Windows interface [15] expands
an icon to a window by climinating the icon and drawing the
window in the next instant. In this case the first static
presentation is the screen with the icon; the next is the
screen with an expanded window. Much of the screen
changes suddenly and without indication of the relaticoship
‘between the cld state and the new state, Current pop-up
menus suffer from the same problem—one instant there is
nothing there; the nexs instant a menu obscures part of the
display.
Moving abjects from one location to another is yet another

. Most current systeins let the wser move an outline

of the object, and then, when the user is finished the move,
the sereen suddenly changes in two places: m:ubjeumlhe
old location vanishes and the object appears in the new
location. Sudden of the screen, na hing how the
two stales are related: l.he user musi compare the current
state and the preceding state and deduce tha connection.
Users overcome obstacles like these by . The first
few encounters are the worst; eventually users learn the
behavior of the interface and come to interact with it
efficiently. Yet while some of the cognitive load of

November 3-5, 1993

UisT'e3 45

http://dx.doi.org/10.1145/168642.168647

Frames Three Principles

Solidity
Desktop objects should appear to be solid objects

Exaggeration
Exaggerate physical actions to enhance perception

Reinforcement
Use effects to drive home feeling of reality

Solidity: Motion Blur

Solidity: Arrival and Departure

Solidity: Arrival and Departure

Exaggeration: Anticipation

Fpll:m 7. Objects anticipate major actions
with a quick contrary motion that draws
the user eye to the object in preparation
for the main motion to come.

e
i
3
B

Reinforcement: Slow In Slow Out

slowly move
out of baginning
pose
during the middle S~ i el e
part of the movement

into final pose

ure 8. ects ease out of their innin ses and ease into their final poses. Although these
minns aﬁhww than that during 51.;9 main %ﬂpﬁiﬂn of the movement, thay ampsutilr quite fasilrlf-'I

Reinforcement: Arcs

Reinforcement: Follow Through

Figure 10. Whan objects come 1o a stop after
moving on their own, they exhibit foliow
through in the form of wiggling back and forth
quickly. This is just suggested by the “wiggle
lines® in the figure—in actuality, the object
moves back and forth, with motion blur.

Animation Case Study

Animation Support in a
User Interface Toolkit:
Flexible, Robust, and
Reusable Abstractions

Hudson and Stasko, 1993

http://dx.doi.org/10.1145/168642.168648

Animation Support in a User Interface TeoolKit:
Flexible, Robust, and Reusable Abstractions

Scott E. Hudson
dohn T. Stasko

Craphics Visualization and Usahility Center
College of Computing
Georgia Irstitute of Technology
Atlanta, GA 30332-0260
E-mail: hudson@cc.gatech.edu, stasko@cc.gatech.edu

ABSTRACT

Animation ¢an be a very effective mechanism to
convey information in visualization and user
interface settings. However, integrating animated
presentations Into user interfaces has typically
been a difficult task since, to date, there hus been
little or no explivit support for animation in
window systems or user interface toolkits, This
paper describes how the Artkit user interface
toolkit has been extended with new animation
support abstractions designed to overcome this
problem, These abswacticns provide a powerful
hut t.onvament base for buﬂdmg a range of
snppnrung such as simple
motion-blur, "squash and smetch”, use of arcing
trd]euuncs antlwp.mon and fnllow through, and
"slow-in [/ slow-out” transitions. Because these
abstractions are provided by the toolkit they are
reusable and may be freely mixed with more
conventional user interface techniques. In
addition, the Artkit implementation of these
abstractions is robust in the face of systems (such
as the X Window Systern and Unix) which can be
iTl-behaved with respect to timing considerations.

Keywords: object-oriented user interface
toolkits, window systems, animation techniques,
dynamic inrerfaces, motion blur, real-time
scheduling.

This work was supporied in part by the National Science
Foundation under grants IR1-9015407, DCA-9214947,
CCR-9121607 and {'CR-9L09399,

Permission t@ copy without fee all or pars of thiz matarisl 1
wrantad providad that the copies are not mads er distributed for
ditect commeraisl advantage, the ACM capyright natics und the
e of the publioativn wud 5 dats appodr, AN UGS 13 GIven
that copying is by pormission af the Association far Computing
Machinery. To copy atherwise, or 1o repubfish, requires a fee
and/or specific permiesion,

© 1993 ACM 0-89791-628-X/93/0011...81.50

1 INTRODUCTION

Human perceptual capabilities provide a
substantial ubility to quickly form and understand
maodels of the world from moving images. Asa
result, in a well designed display, mformation can
often be much more easily comprehended in a
moving scene than in a single static image or even
a sequence of static images. For example, the
“cone tree"' display described in |Robe93|
provides a clear illusmation that the use of
continuous motion can allow much more
information to be presented and understood more
easily.

However, even though the potential benefits of
animation in user interfaces have been recognized
for some time {[BaecY0] for example, surveys a
nuimber of uses for animation in the interface and
cites their benefits and [Stask93] reviews
principles for using animation in inlerfaces and
describes a number of systems that make extensive
use of animation in an interface), explicit support
for animation is rarely, if ever, found in user
interface support environmems, The work
described in this paper is designed to overcome
this problem by showing how flexible, robust,
and teusable support for animation can be
incorporated into a full scale object-oriented user
interface toolkit. Spaufn.ally this paper dcsx.nbes
how the extension mechanisms of Artkit —
Advanced Reusable Toolkit (supperting unr,rlates
in C4+) [Henr90] — have been cmployed to
smoothly integrate animatien support with other
user interface capabilities.

The animation abstractions provided by the Artkit
systern are designed to be powerful and flexible —
providing basic snppott that can be used 1o build &
range of sophisticated technigues such as: simple
motion-blur, “squash and stretch”, use of arcing

November 3-5, 1993

uIsT'93 57

http://dx.doi.org/10.1145/168642.168648

Events and Animation

®\ Interactor
i Object Tree
é‘ﬁﬁ chedule E'.:rueua :
i | 4 ¥]
Dispatch e = o
Animation /st:rt_transitiun[}

Dispatch = transition_step()
Agent end_transition()

Figure 5. Animation Event Translation and Dispatch

Not Just an Implementation

Provides tool abstractions for implementing
previously presented styles of animation

Overcomes a fundamental clash of approaches

Event loop receives input, processes, repaints

Animations expect careful control of frames,
but the event loop has variable timing

Events and Animation

®\ Interactor
i Object Tree
é‘ﬁﬁ chedule E'.:rueua :
i | 4 ¥]
Dispatch e = o
Animation /st:rt_transitiun[}

Dispatch = transition_step()
Agent end_transition()

Figure 5. Animation Event Translation and Dispatch

Transition Object

Transition

[Tnterface Object

Time Interval

Trajectory _
Curve |
Pacing Function |

Figure 3. Parts of a Transition Object

Pacing Function

—k
(-

Uniform Pace

Qutput Value

Non-Uniform Pace
(Slow-in / Slow-out)

o
o

0.0 Input Value 1.0

Figure 4. Two Example Pacing Functions

Computing a Frame

Step Delivered

to Object ™|
I
_ |
E{_ "\ Pacing Transform, 7~ A
Local Pargmeter Space |
0.0 | P
Previous |
End I
Time .
Estimated
Redraw
End

Figure 8. Translation from Time to Space

Animation Case Study

Based on increased understanding of how
animation should be done in the interface,
increasingly mature tools develop

Now built into major commercial toolkits
(e.g., Microsoft’s WPF, JavaFX, jQuery)

Once mature, begins to be used as a
building block in even more complex behaviors

Animation Case Study

The Kinetic Typography
Engine: An Extensible
System for Animating
Expressive Text

Lee et al, 2002

http://dx.doi.org/10.1145/571985.571997

http://dx.doi.org/10.1145/571985.571997

Kinetic Typography Engine

Kinetic Typography Engine

Kinetic Typography Engine

Goals of Kinetic Type Animation Composition
Emotional content
Creation of characters

Direction of attention

Based on existing work

Animation Case Study

Prefuse: D3:
A Toolkit for Interactive Data-Driven Documents
Information Visualization

Heer et al, 2005 Bostock et al, 2011

http://dx.doi.org/10.1145/1054972.1055031 http://dx.doi.org/10.1109/TVCG.2011.185

http://dx.doi.org/10.1145/1054972.1055031
http://dx.doi.org/10.1109/TVCG.2011.185

Tools and Interfaces

Why Interface Tools?

Case Study of Model-View-Controller
Case Study of Animation
Sapir-Whorf Hypothesis
Thoughtfulness in Tools

Sapir-Whorf Hypothesis

Language is not simply a way of voicing ideas,
but is the very thing which shapes those ideas

Tools not only make it easy to build certain types
of software, they push you to think in terms of
the types of software they can support

You must be aware of this when choosing tools,
designing applications, and creating new tools

Animation Case Study

Phosphor:

Explaining Transitions
in the User Interface
Using Afterglow Effects

Baudisch et al, 2006

http://dx.doi.org/10.1145/1166253.1166280

http://dx.doi.org/10.1145/1166253.1166280

Phosphor

Animation can help people
follow interface transitions

But the right speed is crucial
Too fast increases error rate

Too slow increases task time

The right speed depends on
familiarity, distraction, etc.

It cannot be determined

Windows Media Player

Apple Expose

Phosphor

Phosphor shows the
outcome immediately,
then explains the change
In retrospect using a
diagrammatic depiction

Phosphor

phosphor

Phosphor

Challenging Assumptions of Tools

Phosphor breaks from the assumptions that
have evolved into current transition tools

lllll — —
past future

Av
..... —

Tools and Interfaces

Tools embody expertise and assumptions

Tools evolve based on emerging understanding
of how to address categories of problems

Be conscious of your tool decisions
Try to think about designs before tying to a tool
Choose good and appropriate tools
Understand what you are getting in a tool
Push yourself to think outside the tool

Prefab

Prefab

Prefab

Prefab uses pixel-level analysis to modify existing
applications from the outside, using only pixels

Prefab is informed by how toolkits work, but not
linked to any particular toolkit implementation

Allows trying and fielding new ideas that are not
supported by existing applications or toolkits

CSE 440: Introduction to HCI

User Interface Design, Prototyping, and Evaluation

Lecture 15: James Fogarty

Interface Implementation Alex Fiannaca
Lauren Milne
Saba Kawas

Kelsey Munsell

Tuesday/Thursday
12:00to 1:20

