
CSE 440: Introduction to HCI
User Interface Design, Prototyping, and Evaluation

James Fogarty
Daniel Epstein
Brad Jacobson
King Xia

Tuesday/Thursday
10:30 to 11:50
MOR 234

Lecture 15:
Interface Implementation

Tools and Interfaces

Why Interface Tools?

Case Study of Model-View-Controller

Case Study of Animation

Sapir-Whorf Hypothesis

Thoughtfulness in Tools

Sequential Programs

Program takes control, prompts for input

Person waits
on the program

Program says when
it is ready for more
input, which the
person then provides

Sequential Programs

while true {

print “Prompt for Input”

input = read_line_of_text()

output = do_work()

print output

}

Person is literally modeled as a file

Event-Driven Programming

A program waits for a person to provide input

All communication done via events

“mouse down”, “item drag”, “key up”

All events go to a queue

Ensures events handled in order

Hides specifics from applications

Mouse Software

Keyboard Software

Event Queue

Basic Interactive Software Loop

do {

e = read_event();

dispatch_event(e);

if (damage_exists())

update_display();

} while (e.type != WM_QUIT);

Nearly all interactive software has this somewhere

input}

output }

processing}

Basic Interactive Software Loop

Have you ever written this loop?

Basic Interactive Software Loop

Have you ever written this loop?

Contrast with:

“One of the most complex aspects of Xlib
programming is designing the event loop, which
must take into account all of the possible events
that can occur in a window.”

Nye & O'Reilly, X Toolkit Intrinsics
Programming Manual, vol. 4, 1990, p. 241.

Understanding Tools

We use tools because they
Identify common or important practices

Package those practices in a framework

Make it easy to follow those practices

Make it easier to focus on our application

What are the benefits of this?
Being faster allows more iterative design

Implementation is generally better in the tool

Consistency across applications using same tool

Understanding Tools

We use tools because they
Identify common or important practices

Package those practices in a framework

Make it easy to follow those practices

Make it easier to focus on our application

What are the benefits of this?
Being faster allows more iterative design

Implementation is generally better in the tool

Consistency across applications using same tool

Understanding Tools

Why is designing tools difficult?

Need to understand the core practices and problems

Those are often evolving with technology and design

Example: Responsiveness in event-driven interface

Event-driven interaction is asynchronous

How to maintain responsiveness in the interface
while executing some large computation?

Understanding Tools

Why is designing tools difficult?

Need to understand the core practices and problems

Those are often evolving with technology and design

Example: Responsiveness in event-driven interface

Cursor:

WaitCursor vs. CWaitCursor vs. In Framework

Progress Bar:

Data Races vs. Idle vs. Loop vs. Worker Objects

Tools Terminology

Threshold vs. Ceiling

Threshold: How hard to get started

Ceiling: How much can be achieved

These depend on what is being implemented

Path of Least Resistance

Tools influence what interfaces are created

Moving Targets

Changing needs make tools incomplete or obsolete

Myers et al, 2000
http://dx.doi.org/10.1145/344949.344959

http://dx.doi.org/10.1145/344949.344959

Tools and Interfaces

Why Interface Tools?

Case Study of Model-View-Controller

Case Study of Animation

Sapir-Whorf Hypothesis

Thoughtfulness in Tools

Model-View-Controller

How to organize the code of an interface?

This is a surprisingly complicated question,
with many unstated assumptions requiring
significant background to understand and resolve

Seeheim Model

Results from 1985 workshop on user interface
management systems, driven by goals of
portability and modifiability, based in separating
the interface from application functionality

Huh?

Buxton, 1983
http://dx.doi.org/10.1145/988584.988586

http://dx.doi.org/10.1145/988584.988586

Seeheim Model

Lexical - Presentation
External presentation of interface

Generates the display, receive input

Syntactic - Dialog Control
Parsing of tokens into syntax

Maintain state

Semantic - Application Interface Model
Defines interaction between
interface and rest of software

e.g., “add” vs. “append” vs. “^a” vs.

e.g., how to make a “menu” or “button”

e.g., interface modes

e.g., drag-and-drop target highlighting

Seeheim Model

Seeheim Model

Huh?

Seeheim Model

Rapid Semantic Feedback
In practice, all of the code goes in here

Model-View-Controller

Introduced by Smalltalk developers at PARC

Partitions application to be scalable, maintainable

Model

View

Controller

View / Controller Relationship

In theory:

Pattern of behavior in response to input events
(i.e., concerns of the controller) are independent
of visual geometry (i.e., concerns of the view)

Controller contacts view to interpret what input
events mean in context of a view (e.g., selection)

View / Controller Relationship

In practice:

View and controller often tightly intertwined,
almost always occur in matched pairs

Many architectures combine into a single class

Model

View

Controller

Model-View-Controller

MVC separates concerns and scales better than
global variables or putting everything together

Separation eases maintenance
Can add new fields to model,
new views can leverage, old views will still work

Can replace model without changing views

Separation of “business logic” can require care
May help to think of model as the client model

MVC on the Web

Core ideas manifest differently according to needs

For example, backbone.js implements client views of
models, with REST API calls to web server

Web tools often implement views as templates

Web
Server

Collection

Model View

Tools and Interfaces

Why Interface Tools?

Case Study of Model-View-Controller

Case Study of Animation

Sapir-Whorf Hypothesis

Thoughtfulness in Tools

Luxor Jr.

Luxor Jr.

Animation Case Study

Principles of Traditional
Animation Applied to
3D Computer Animation

Lasseter, 1987
http://dx.doi.org/10.1145/37402.37407

http://dx.doi.org/10.1145/37402.37407

Squash and Stretch

Squash and Stretch

Squash and Stretch

Timing

Timing

Timing

Anticipation

Staging

Staging

Follow Through, Overlap, Secondary

Pose-to-Pose, Slow In, Slow Out

Objects with mass must accelerate and decelerate

Interesting frames are typically at ends,
tweaks perception to emphasize these poses

Arcs

Animation Case Study

Animation: From Cartoons
to the User Interface

Chang and Ungar, 1993
http://dx.doi.org/10.1145/168642.168647

http://dx.doi.org/10.1145/168642.168647

Frames Three Principles

Solidity

Desktop objects should appear to be solid objects

Exaggeration

Exaggerate physical actions to enhance perception

Reinforcement

Use effects to drive home feeling of reality

Solidity: Motion Blur

Solidity: Arrival and Departure

Solidity: Arrival and Departure

Exaggeration: Anticipation

Reinforcement: Slow In Slow Out

Reinforcement: Arcs

Reinforcement: Follow Through

Animation Case Study

Animation Support in a
User Interface Toolkit:
Flexible, Robust, and
Reusable Abstractions

Hudson and Stasko, 1993
http://dx.doi.org/10.1145/168642.168648

http://dx.doi.org/10.1145/168642.168648

Events and Animation

Not Just an Implementation

Provides tool abstractions for implementing
previously presented styles of animation

Overcomes a fundamental clash of approaches

Event loop receives input, processes, repaints

Animations expect careful control of frames,
but the event loop has variable timing

Events and Animation

Transition Object

Pacing Function

Computing a Frame

Animation Case Study

Based on increased understanding of how
animation should be done in the interface,
increasingly mature tools develop

Now built into major commercial toolkits
(e.g., Microsoft’s WPF, JavaFX, jQuery)

Once mature, begins to be used as a
building block in even more complex behaviors

Animation Case Study

The Kinetic Typography
Engine: An Extensible
System for Animating
Expressive Text

Lee et al, 2002
http://dx.doi.org/10.1145/571985.571997

http://dx.doi.org/10.1145/571985.571997

Kinetic Typography Engine

Kinetic Typography Engine

Kinetic Typography Engine

Goals of Kinetic Type

Emotional content

Creation of characters

Direction of attention

Based on existing work

Animation Composition

Animation Case Study

Prefuse: A Toolkit for
Interactive Information
Visualization

Heer et al, 2005
http://dx.doi.org/10.1145/1054972.1055031

D3: Data-Driven
Documents

Bostock et al, 2011
http://dx.doi.org/10.1109/TVCG.2011.185

http://dx.doi.org/10.1145/1054972.1055031
http://dx.doi.org/10.1109/TVCG.2011.185

Tools and Interfaces

Why Interface Tools?

Case Study of Model-View-Controller

Case Study of Animation

Sapir-Whorf Hypothesis

Thoughtfulness in Tools

Sapir-Whorf Hypothesis

Language is not simply a way of voicing ideas,
but is the very thing which shapes those ideas

Tools not only make it easy to build certain types
of software, they push you to think in terms of
the types of software they can support

You must be aware of this when choosing tools,
designing applications, and creating new tools

Animation Case Study

Phosphor: Explaining
Transitions in the User
Interface Using Afterglow
Effects

Baudisch et al, 2006
http://dx.doi.org/10.1145/1166253.1166280

http://dx.doi.org/10.1145/1166253.1166280

Phosphor

Animation can help people
follow interface transitions

But the right speed is crucial

Too fast increases error rate

Too slow increases task time

The right speed depends on
familiarity, distraction, etc.

It cannot be determined

Apple Expose

Windows Media Player

Phosphor

Phosphor shows the
outcome immediately,
then explains the change
in retrospect using a
diagrammatic depiction

Phosphor

Phosphor

animation

animationpast future

phosphor
past

phosphor

future

Challenging Assumptions of Tools

Phosphor breaks from the assumptions that
have evolved into current transition tools

Tools and Interfaces

Tools embody expertise and assumptions

Tools evolve based on emerging understanding
of how to address categories of problems

Be conscious of your tool decisions

Try to think about designs before tying to a tool

Choose good and appropriate tools

Understand what you are getting in a tool

Push yourself to think outside the tool

Things I Hope You Learned

Fundamental tools terminology

Myers et al, 2000

http://dx.doi.org/10.1145/344949.344959

Perspectives on “making progress” in tools

Olsen, 2007

http://dx.doi.org/10.1145/1294211.1294256

Greenberg and Buxton, 2008

http://dx.doi.org/10.1145/1357054.1357074

http://dx.doi.org/10.1145/344949.344959
http://dx.doi.org/10.1145/1294211.1294256
http://dx.doi.org/10.1145/1357054.1357074

CSE 440: Introduction to HCI
User Interface Design, Prototyping, and Evaluation

James Fogarty
Daniel Epstein
Brad Jacobson
King Xia

Tuesday/Thursday
10:30 to 11:50
MOR 234

Lecture 15:
Interface Implementation

