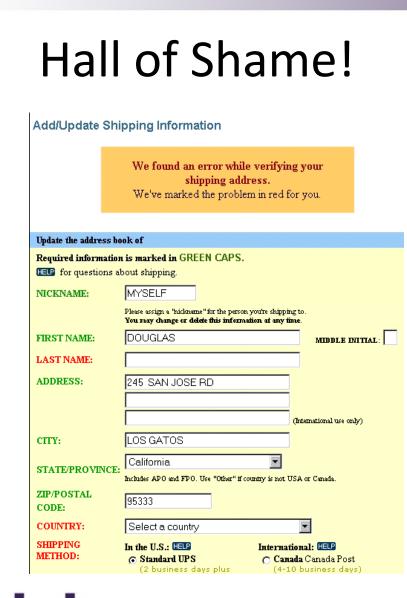
CSE 440: Introduction to HCI User Interface Design, Prototyping, and Evaluation

Lecture 06: Human Performance James Fogarty Daniel Epstein Brad Jacobson King Xia

University of Washington

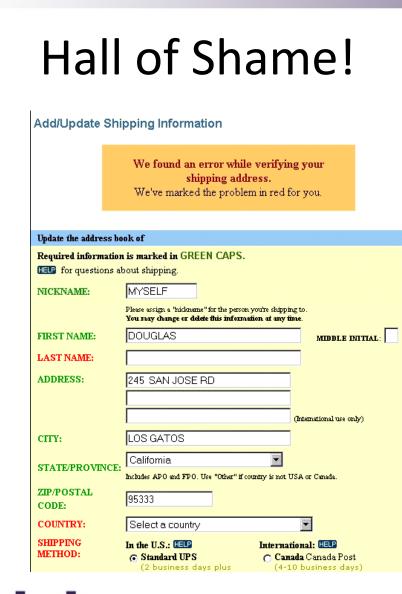
Tuesday/Thursday 10:30 to 11:50 MOR 234


Hall of Fame or Shame?

Add/Update Shipping Information

We found an error while verifying your shipping address. We've marked the problem in red for you.

Update the address bo	ook of				
Required information	n is marked in GREEN CAPS.				
HELP for questions a	bout shipping.				
NICKNAME:	MYSELF				
	Please assign a "hickname" for the person you're shippi You may change or delete this information at any t				
FIRST NAME:	DOUGLAS	MIDDLE INITIAL:			
LAST NAME:					
ADDRESS:	245 SAN JOSE RD				
		(International use only)			
CITY:	LOS GATOS]			
STATE/PROVINCE:	California				
	Includes APO and FPO. Use "Other" if country is not USA or Canada.				
ZIP/POSTAL CODE:	95333				
COUNTRY:	Select a country				
SHIPPING METHOD:	💽 Standard UPS 💦 Car	tional: HELP uada Canada Post 10 business days)			



Based on a major retailer

In study, people could not get past this screen, why?

Based on a major retailer

In study, people could not get past this screen, why?

Color deficiency Can not distinguish between red and green

How to fix? Redundant cues

Team Project Submissions

Please submit your team projects only once Multiple submissions creates a lot of overhead Your team should be able to coordinate this

Name files according to project LifeAsAProf-ContextualInquiryReview.pdf

Participant Anonymity

Use pseudonyms for participants Anonymity is important, a general practice

Be absolutely positive you do this before posting

Today

Human Performance

Visual System Model Human Processor Fitts's Law Gestalt Principles

Contextual Inquiry Review

Friday: 6 Tasks Informed by Contextual Inquiry

These are Examples of What?

Popsicle-stick bridge

 $x = x0 + v0t + \frac{1}{2} at2$

ACT-R

Goffman's Negotiated Approach

Norman's Execution-Evaluation Cycle

Models

We have said models describe phenomena, isolating components and allowing a closer look

Today is a closer look at modeling humans

Capture essential pieces

Model should have what it needs but no more

Thus avoid underfitting or overfitting model

Allow us to measure

Collect data, put in model, compare model terms

Allow us to predict

The better the model, the better the predictions

University of Washington

Creating a Model

How would you go about creating a model?

Creating a Model

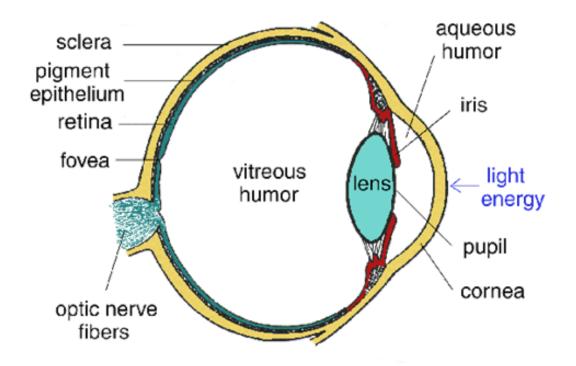
How would you go about creating a model?

One approach:

Observe, Collect Data, Find Patterns, Draw Analogies, Devise Model, Test Fit to Data, Test Predictions, Revise

Fundamentally an inductive process

Today


Some example models of human performance

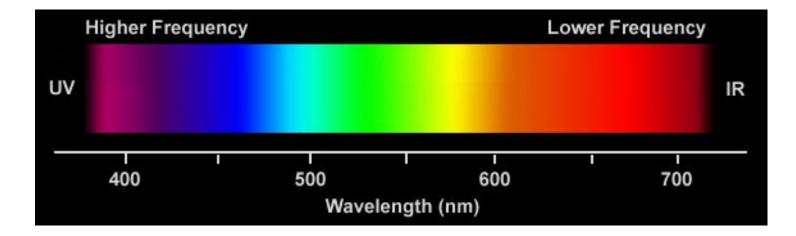
Visual System Model Human Processor Fitts's Law Gestalt Principles Biological Model Higher-Level Model Model by Analogy Predict Interpretation

Human Visual System

University of Washington

Light passes through lens, focused on retina

Blind Spot?


Blind Spot

а	b	С	đ	е	f	9	h
Ι	t	k	I	m	п	0	P
q	Г	S	t	Ų	v	W	x

Visible Spectrum

Covered with light-sensitive receptors Rods (120 million)

Sensitive to broad spectrum of light

Sensitive to small amounts of light

Cannot discriminate between colors

Sense intensity or shades of gray

Primarily for night vision & perceiving movement

Cones (6 million)

Used to sense color

Center of retina has most of the ... ??

Center of retina has most of the cones

Allows for high acuity of objects focused at center

Center of retina has most of the cones Allows for high acuity of objects focused at center

Edge of retina is dominated by ... ??

Center of retina has most of the cones Allows for high acuity of objects focused at center

Edge of retina is dominated by rods Allows detecting motion of threats in periphery

Center of retina has most of the cones Allows for high acuity of objects focused at center

Edge of retina is dominated by rods Allows detecting motion of threats in periphery

What does that mean for you?

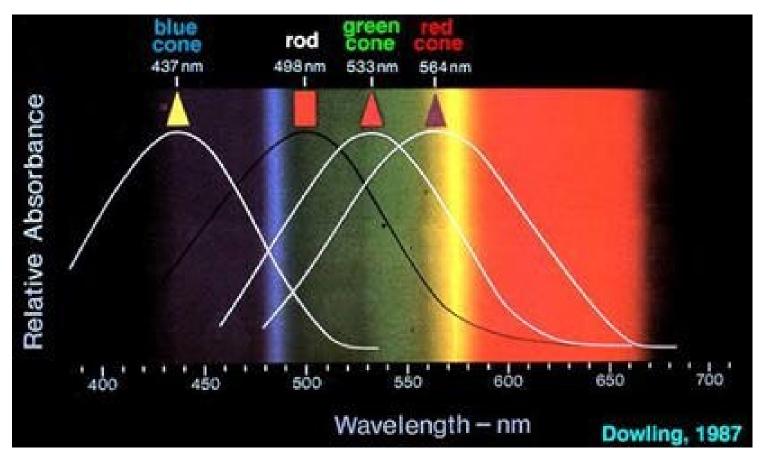
Center of retina has most of the cones Allows for high acuity of objects focused at center

Edge of retina is dominated by rods Allows detecting motion of threats in periphery

What does that mean for you? Peripheral movement is easily distracting

Color Perception via Cones

Photopigments used to sense color


3 types: blue, green, "red" (actually yellow)

Each sensitive to different band of spectrum

Ratio of neural activity stimulation for the three types of gives us a continuous perception of color

Color Sensitivity

Distribution of Photopigments

Not distributed evenly

Mainly reds (64%), Very few blues (4%) Insensitivity to short wavelengths (i.e., blue)

No blue cones in retina center Fixation on small blue object yields "disappearance"

Lens yellows with age, absorbs short wavelengths Sensitivity to blue is reduced even further

Color Sensitivity & Image Detection

Most sensitive to center of spectrum

To be perceived as the same, blues and reds must be brighter than greens and yellows

Brightness determined mainly by red and green

Y = 0.3 Red + 0.59 Green + 0.11 Blue

Shapes detected by finding edges We use brightness and color difference Implication

Blue edges and shapes are hard

University of Washington

Color Sensitivity & Image Detection

Most sensitive to center of spectrum

To be perceived as the same, blues and reds must be brighter than greens and yellows

Brightness determined mainly by red and green

Y = 0.3 Red + 0.59 Green + 0.11 Blue

Shapes detected by finding edges We use brightness and color difference Implication

Blue edges and shapes are hard

University of Washington

Focus

Different wavelengths of light focused at different distances behind eye's lens

Constant refocusing causes fatigue

Saturated colors (i.e., pure colors) require more focusing than desaturated (i.e., pastels)

Focus

Different wavelengths of light focused at different distances behind eye's lens

Constant refocusing causes fatigue

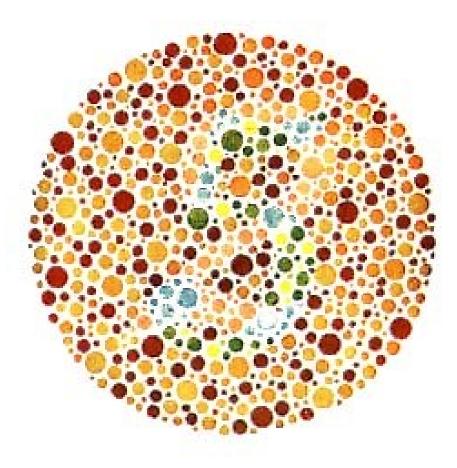
Saturated colors (i.e., pure colors) require more focusing than desaturated (i.e., pastels)

Color Deficiency

Trouble discriminating colors Affects about 9% of population

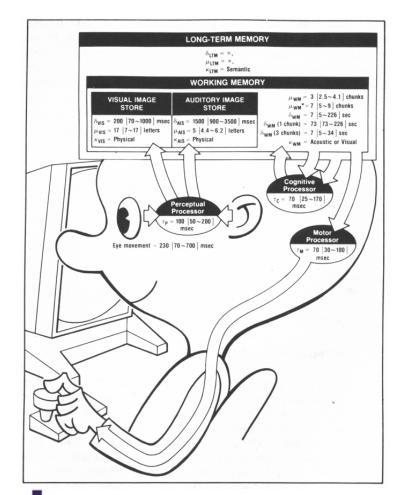
Two main types

Different photopigment response most common Reduces capability to discern small color differences


Red-Green deficiency is best known

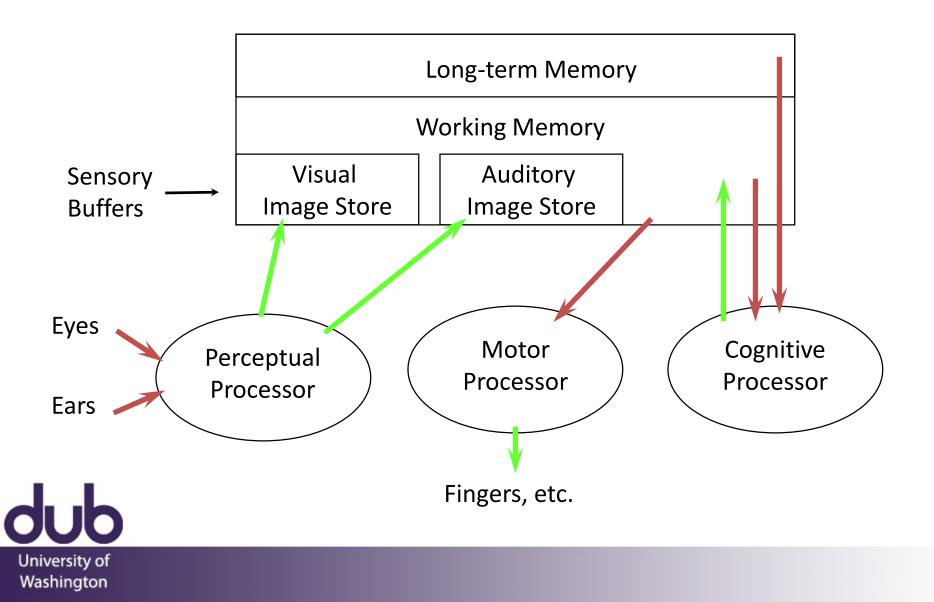
Lack of either green or red photopigment, cannot discriminate colors dependent on red and green

Also known as color blindness



Red-Green Deficiency Test

The Model Human Processor


Developed by Card, Moran, & Newell (1983)

Based on empirical data Summarizing human behavior in a manner easy to consume and act upon

Same book that named human computer interaction

The Model Human Processor

Basics of Model Human Processor

Sometimes serial, sometimes parallel

Serial in action and parallel in recognition

Pressing key in response to light

Driving, reading signs, hearing all simultaneously

Parameters

Processors have cycle time, approximately 100-200ms Memories have capacity, decay time, and type

A Working Memory Experiment

BMCIACSEI

BM CIA CSE I

IBM CIA CSE

Memory

Working memory (also known as short-term) Small capacity (7 ± 2 "chunks") 6174591765 vs. (617) 459-1765 IBMCIACSE vs. IBM CIA CSE Rapid access (~ 70ms) and decay (~200 ms) Pass to LTM after a few seconds of continued storage Long-term memory Huge (if not "unlimited") Slower access time (~100 ms) with little decay

University of Washington

Volunteer

Volunteer

Start saying colors you see in list of words When slide comes up, as fast as you can There will be three columns of words

Say "done" when finished Everyone else time how long it takes

red	green	blue
		red
blue	blue	blue
green		red
red	green	green

Do it again

Say "done" when finished

ivd	olftcs	fwax
		lxngyt
mkbh	xbts	cfto
bhfe		fwa
cnofgt	uhths	dalcrd

Do it again

Say "done" when finished

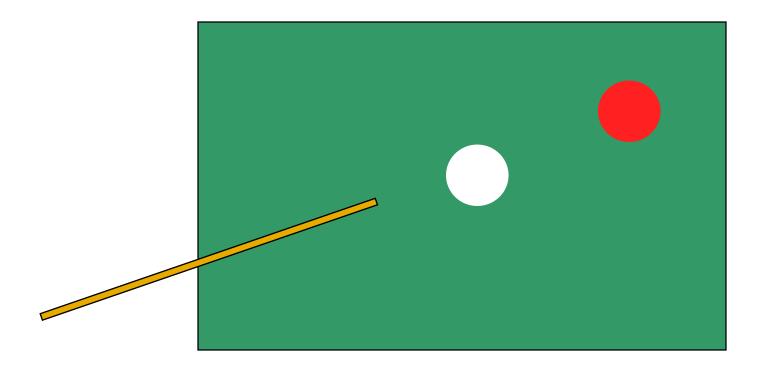
red	red	green
blue	yellow	
		green
yellow	blue	blue
	yellow	yellow

Model Human Processor Operation

Recognize-Act Cycle of the Cognitive Processor

On each cycle, contents in working memory initiate actions associatively linked in long-term memory Actions modify the contents of working memory

Discrimination Principle


Retrieval is determined by candidates that exist in memory relative to retrieval cues

Interference created by strongly activated chunks

See also Freudian slips

Perceptual Causality

How soon must the red ball move after cue ball collides with it?

Perceptual Causality

Stimuli that occur within one cycle of the perceptual processor fuse into a single concept

Requirement

If you want to create the perception of causality, then you need to be sufficiently responsive

Caution

Two stimuli intended to be distinct can fuse if the first event appears to cause the other

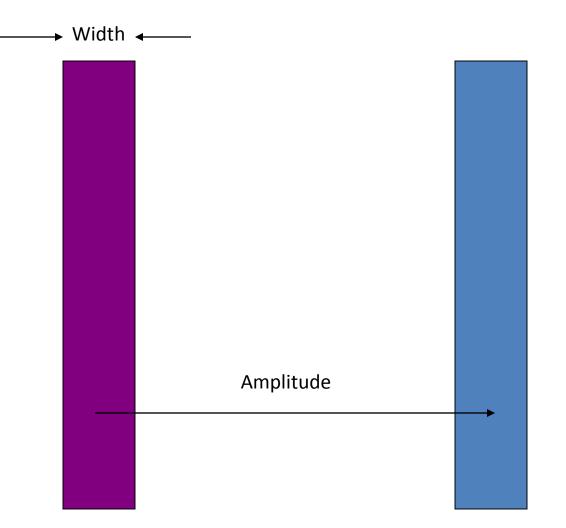
Fitts's Law (1954)

Models time to acquire targets in aimed movement

- Reaching for a control in a cockpit
- Moving across a dashboard
- Pulling defective items from a conveyor belt
- Clicking on icons using a mouse
- Very powerful, widely used
 - Holds for many circumstances (e.g., under water)
 - Allows for comparison among different experiments

Used both to measure and to predict

Fitts's Law (1954)James's use of 's is correct,
but others may say Fitts' Law


Models time to acquire targets in aimed movement

- Reaching for a control in a cockpit
- Moving across a dashboard
- Pulling defective items from a conveyor belt
- Clicking on icons using a mouse
- Very powerful, widely used
 - Holds for many circumstances (e.g., under water)
 - Allows for comparison among different experiments

Used both to measure and to predict

Reciprocal Point-Select Task

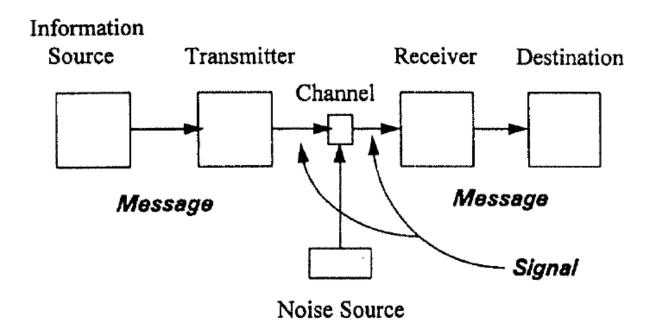
Closed Loop versus Open Loop

What is closed loop motion?

What is open loop motion?

Closed Loop versus Open Loop

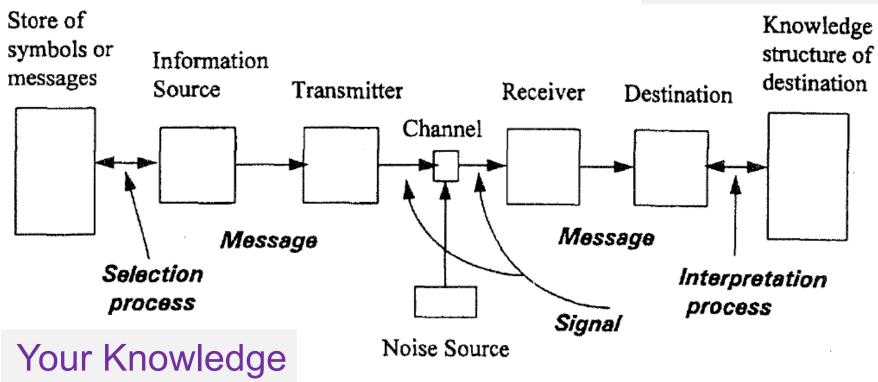
What is closed loop motion?


Rapid aimed movements with feedback correction Fitts's law models this

What is open loop motion?

Ballistic movements without feedback correction Example: Throwing a dart See Schmidt's Law (1979)

Model by Analogy



Analogy to Information Transmission Shannon and Weaver, 1959

Model by Analogy

The Interface

Analogy to Information Transmission Shannon and Weaver, 1959

Fitts's Law

$MT = a + b \log 2(A / W + 1)$

What kind of equation does this remind you of?

Fitts's Law

 $MT = a + b \log 2(A / W + 1)$

What kind of equation does this remind you of?

y = mx + b

MT = a + bx, where x = log2(A / W + 1)
x is called the Index of Difficulty (ID)
As "A" goes up, ID goes up
As "W" goes up, ID goes down

Index of Difficulty (ID)

log2(A / W + 1)

Fitts's Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance (A) to target width (W)

Why is it significant that it is a ratio?

Index of Difficulty (ID)

log2(A / W + 1)

Fitts's Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance (A) to target width (W)

Why is it significant that it is a ratio? Units of A and W don't matter Allows comparison across experiments

Index of Difficulty (ID)

log2(A / W + 1)

Fitts's Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance (A) to target width (W)

ID units typically in "bits"

Because of association with information capacity and somewhat arbitrary use of base-2 logarithm

Index of Performance (IP)

$MT = a + b \log 2(A / W + 1)$

b is slope

1/b is called Index of Performance (IP) If MT is in seconds, IP is in bits/second

Also called "throughput" or "bandwidth" Consistent with analogy of the interaction as an information channel from human to target

A Fitts's Law Experiment

"Beating" Fitts's law

It is the law, right? MT = a + b log2(A / W + 1)

So how can we reduce movement time? Reduce A Increase W

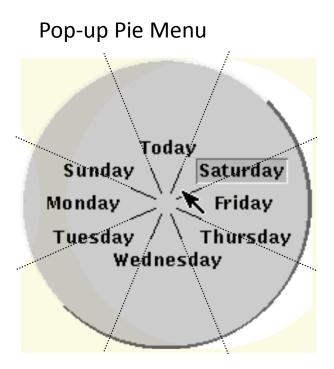
Fitts's Law Related Techniques

Put targets closer together

Make targets bigger

Make cursor bigger Area cursors Bubble cursor

Use impenetrable edges

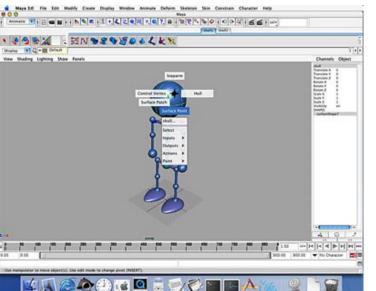


Fitts's Law Examples

Which will be faster on average?

Pop-up Linear Menu

Today
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

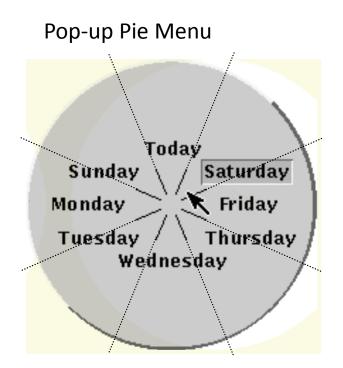


Pie Menus in Use

The Sims

Rainbow 6

Maya


University of Washington

Fitts's Law Examples

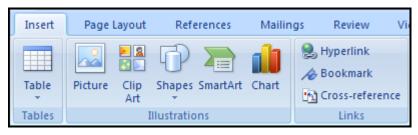
Which will be faster on average?

Pop-up Linear Menu

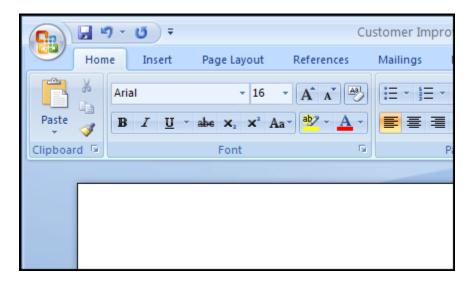
Today
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

What about adaptive menus?

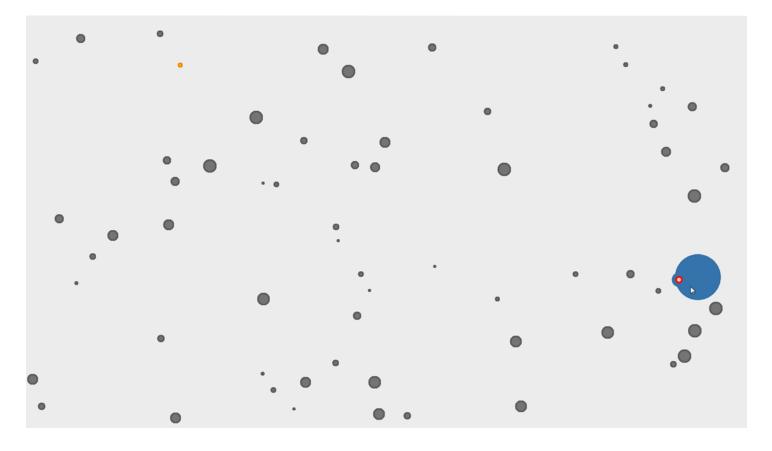
Fitts's Law in Windowing


Windows 95: Missed by a pixel Windows XP: Good to the last drop

Macintosh Menu


Fitts's Law in MS Office 2007

Larger, labeled controls can be clicked more quickly

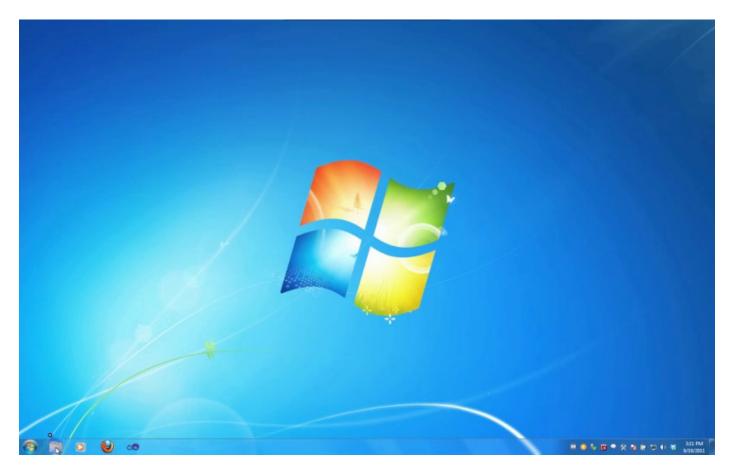

Mini toolbar is close to the cursor

Magic Corner: Office Button in the upper-left corner

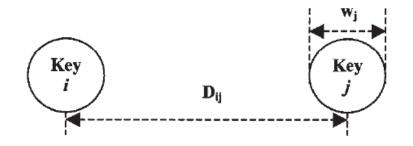
Bubble Cursor

Bubble Cursor

Grossman and Balakrishnan, 2005


Bubble Cursor with Prefab

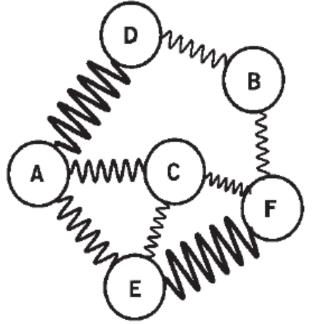
Dixon et al, 2012


Bubble Cursor with Prefab

Dixon et al, 2012

Fitts's Law and Keyboard Layout

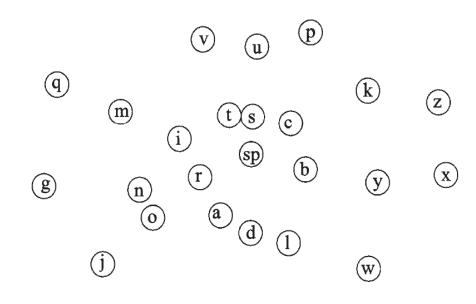
 $MT = a + b \log_2 \left(\frac{D_{ij}}{W_j} + 1 \right),$

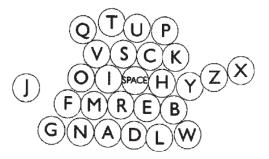

Zhai et. al (2002) pose stylus keyboard layout as an optimization of all key pairs, weighted by language frequency

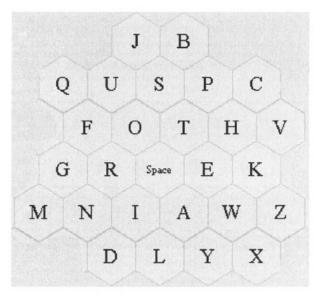
$$t = \sum_{i=1}^{27} \sum_{j=1}^{27} \frac{P_{ij}}{IP} \left[log_2 \left(\frac{D_{ij}}{W_j} + 1 \right) \right],$$

Hooke's Keyboard

Optimizes a system of springs



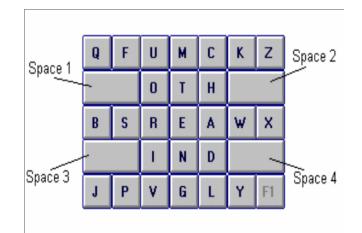




Metropolis Keyboard

Random walk minimizing scoring function

Considering Multiple Space Keys


FITALY Keyboard

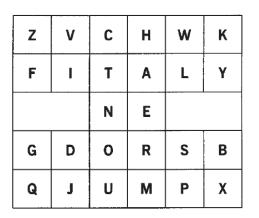
Textware Solutions

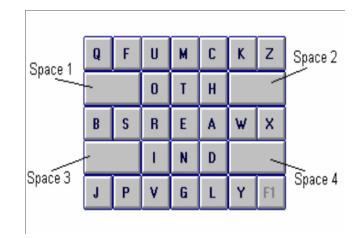
OPTI Keyboard

MacKenzie and Zhang 1999

Z	۷	С	Н	W	к
F	I	т	Α	L	Y
		N	Ε		
G	D	0	R	S	В
Q	J	U	М	Ρ	Х

Considering Multiple Space Keys

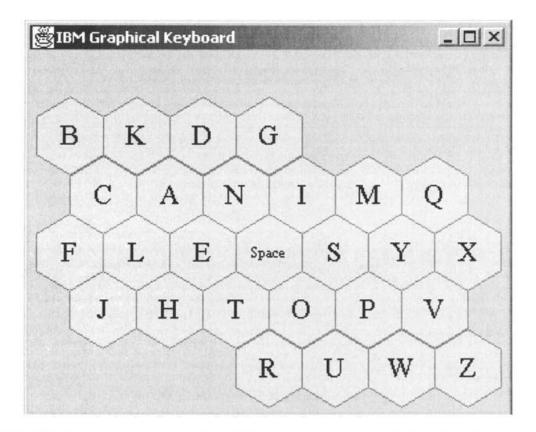

FITALY Keyboard


University of Washington

Textware Solutions

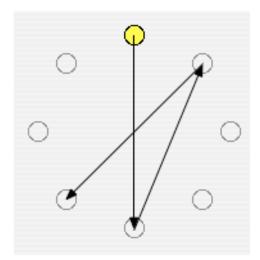
OPTI Keyboard

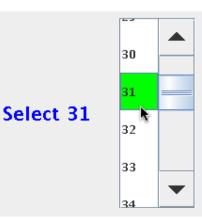
MacKenzie and Zhang 1999



Correct choice of space key becomes important Requires planning head to be optimal

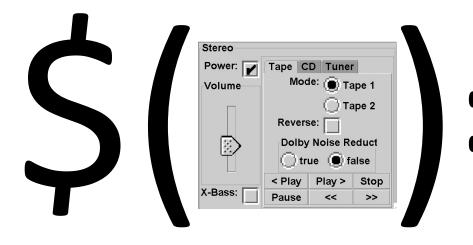
ATOMIK Keyboard


Optimized keyboard, adjusted for early letters in upper left and later letters in lower right


Using Motor Ability in Design

Pointing

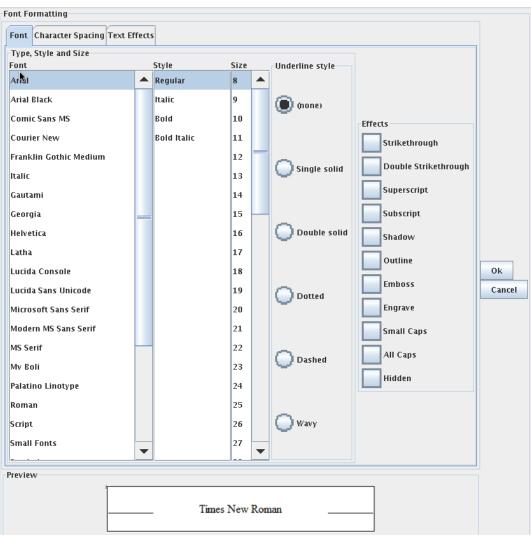
Dragging


List Selection

Gajos et al 2007

Interface Generation As Optimization

Estimated task completion time



Manufacturer Interface

Font Formatting				
Font Character Spacing Text Effects				
Type, Style and Size				
Font	Style	Size		
Arial	🔺 Regular	8 🔺		
Arial Black	💻 Italic	9 💻		
Comic Sans MS	Bold	10		
Courier New	Bold Italic	11		
Franklin Gothic Medium	•	12 💌		
Underline style (no	ine) 🔻	·		
Effects				
Strikethrough: 🔄 Shadow: 🗌 Small Caps: 🔄				
Double Strikethrough: 🔲 Outline: 🔄 👘				
Superscript: 🖂	Superscript: Emboss: All Caps:			
Subscript:	Hidden:			
Subscript Engrave.				
Preview				
Times New Roman				
Ok Cancel				

Person with Cerebral Palsy

Person with Muscular Dystrophy

Font Formatting					
Font			Character Spacing	Text Effects	
Type, Style and Size			Scale	Animations	
Font	Style	Size	200%	(none)	i l
Arial	▲ Regular	8 🔺	150%	Blinking Background	
Arial Black	Italic	9	100%	Las Vegas Lights	
Comic Sans MS	Bold	10	90%	Marching Black Ants	
Courier New	Bold Italic	11	80% 👻	Marching Red Ants	
Franklin Gothic Medium		12 =	Spacing	Shimmer	
Italic		13	Βγ	Sparkle Text	
Gautami		14	0		
Georgia		15	1 =		
Helvetica	=	16	2		
Latha		17	Normal 3		
Lucida Console		18	Expanded 4		
Lucida Sans Unicode		19	Condensed 5		
Microsoft Sans Serif		20	6		
Modern MS Sans Serif		21	7		
MS Serif		22	8		
Mv Boli		23	9 👻		
Palatino Linotype	10	24	Position		
Roman		25			
Script		26	Normal By		
Small Fonts		27	Raised 0		Ok
Symbol	-	28 —	Lowered 1 =		Cancel
Underline style	•	20 🔻	3		
(none)					
Single solid			4		
Double solid			🔲 Kerning for fonts		
Dotted			Points and above		
Dashed			8		
Wavy			9 =		
mary			10		
Effects			11		
			12		
Strikethrough	Shadow Small C	ans	13		
🔲 Double Strikethrough 📘	Outline 🚞		14		
Superscript	Emboss All Cap	5	15		
	Hidden 🗌 🗌		16		
Subscript	Engrave		17 💌		
Preview					-
Ir				7	
Times N			New Roman		
l					

Interface Generation As Optimization

In a study with 11 participants with diverse motor impairments:

Consistently faster using generated interfaces (26%)

Fewer errors using generated interfaces (73% fewer)

Strongly preferred generated interfaces

Fitts's Law Related Techniques

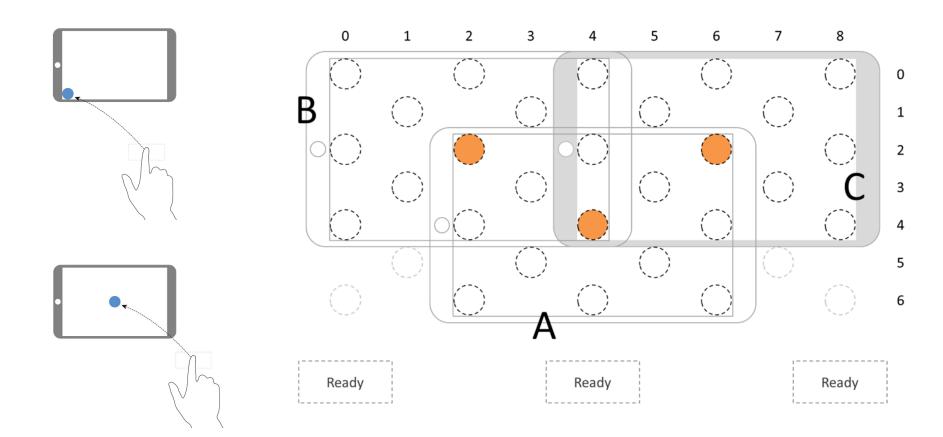
Gravity Fields

Pointer gets close, gets "sucked in" to target

Sticky Icons

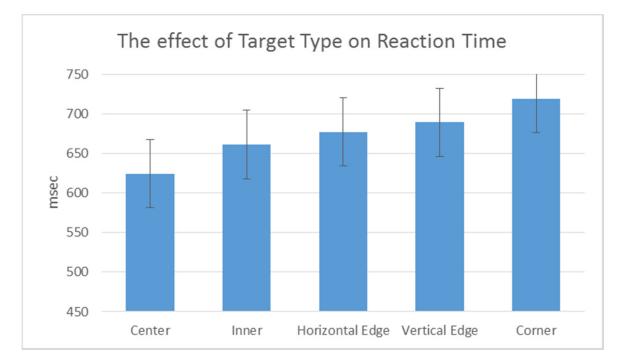
When within target, pointer "sticks"

Constrained Motion


Snapping, holding Shift to limit degrees of movement

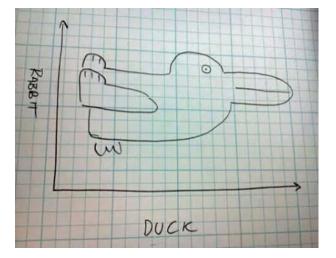
Target Prediction

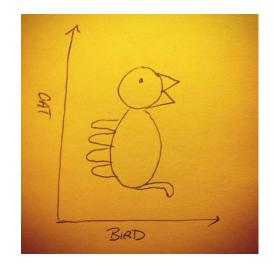
Determine likely target, move it nearer or expand it


Fitts's Law, Edge Targets, and Touch

Fitts's Law, Edge Targets, and Touch

Avrahami finds edge targets are actually slower with touch devices, at same physical location

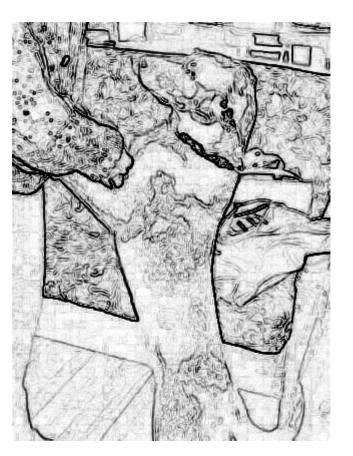



Are people border cautious?

Gestalt Psychology

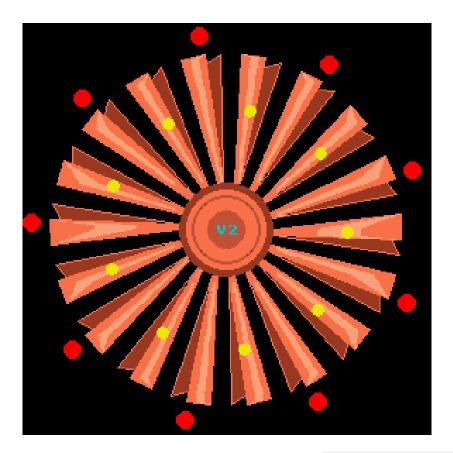
Described loosely in the context of this lecture and associated work, not a real definition

Perception is neither bottom-up nor top-down, rather both inform the other as a whole



Gestalt Psychology

You can still see the dog...


Gestalt Psychology

You can still see the dog...

Spinning Wheel

Follow the red dots vs follow the yellow dots

Blind Spot Interpolation

Proximity

Objects close to each other form a group

•	•	•	•	•	•	
•	•	•	•	•	•	
•	•	•	•	•	•	•••••
•	•	•	•	•	•	
•	•	•	•	•	•	
•	•	•	•	•	•	
•	•	•	•	•	•	
•	•	•	•	•	•	••••••
•	•	•	•	•	•	

Proximity

Using Lies in Research

By Nate Bolt • March 8, 2011

While it might be an uncomfortable topic, uncovering the lies behind a product or interface can be one of the most effective ways to turn ailing projects around.

Read More

Considerations for Mobile Design (Part 2): Dimensions

By David Leggett • March 1, 2011

In part two of this series, David helps readers adapt their design regimes to the (typically) small screens of mobile devices. Using responsive design, our experiences adapt to a variety of conditions.

Read More

A Simple, Usable Review

By Paul Seys • February 24, 2011

In this detailed review, Paul Seys describes an up-and-coming UX title that's jam-packed with lessons for designers both new and established. Follow along to learn how author Giles Colborne's teaches his readers the essence of great design.

Read More

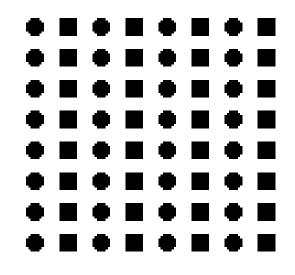
Proximity

1. Tell us about yourself ...

My Name	First Name	Owoh	
Gender	- Select One - 🔻		
Birthday	- Select Month -	▼ Day	Year
I live in	United States		•
Postal Code			

2. Select an ID and password

Yahoo! ID and Email	@ yahoo.com	•	Check
Password		Password	Strength
Re-type Password			


3. In case you forget your ID or password...

Alternate Email	
1.Security Question	- Select One -
Your Answer	
2.Security Question	- Select One -
Your Answer	

Similarity

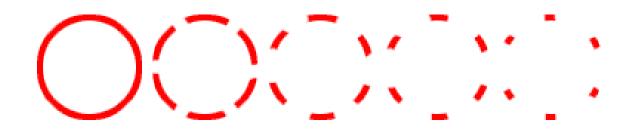
Objects that are similar form a group

Similarity

University of Washington

Proximity and Similarity

Proximity and Similarity



After discovering that one of these accesses a menu, people will expect they all access a menu. They are the same.

Closure

Even incomplete objects are perceived as whole

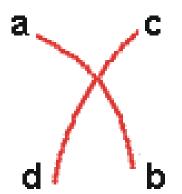
Increases regularity of stimuli

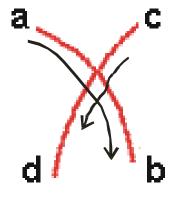
Closure

The Sims

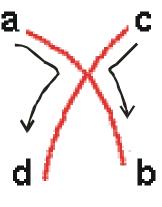
Rainbow 6

Symmetry


Objects are perceived as symmetrical and forming around a center point



Continuity


Objects are perceived as grouped when they align

- Remain distinct even with overlap
- Preferred over abrupt directional changes

what most people see

not this

Continuity

Models from Different Perspectives

Some example models of human performance

Visual System Model Human Processor Fitts's Law Gestalt Principles Biological Model Higher-Level Model Model by Analogy Predict Interpretation

CSE 440: Introduction to HCI User Interface Design, Prototyping, and Evaluation

Lecture 06: Human Performance James Fogarty Daniel Epstein Brad Jacobson King Xia

University of Washington

Tuesday/Thursday 10:30 to 11:50 MOR 234