

Interactive Prototype
David Bai – Design
Aaron Miller – Testing
Joseph Muhm – Documentation, Group Leader

Online Version: http://bit.ly/8Smkow

Contents

Problem Overview ... 2

Tasks .. 2

Easy.. 2

Medium .. 2

Hard ... 2

Interface Changes .. 2

Edit/Save Posts ... 2

Location Field .. 3

Text Input .. 3

Tabs ... 3

Minor Additional Revisions .. 4

Interactive Prototype .. 5

Overview.. 5

Task Scenarios ... 5

Implementation .. 7

Special Techniques .. 7

Missing Functionality ... 8

http://bit.ly/8Smkow

Problem Overview
Maintaining a healthy diet is a difficult task because it is often hard to find healthy

choices when planning meals under limiting time constraints. Many people want to eat

healthy but cannot find real time suggestions or role models to follow. As a result, it is

common for people to settle for whatever is most convenient and pledge to eat healthier

next time. We see Fitter as a solution to this problem because it provides meal

suggestions in real time and the ability to follow the dietary habits of role models. Users

are able to see what others are eating and share recipes for others to try. Fitter provides

users with many ideas and recipes providing them with options for healthy eating.

Tasks

Easy
The easiest task is to use Fitter to find a recipe to use a specific ingredient in. This task

demonstrates the search functionality to find posts by keyword. Users are able to search

based on ingredient to find posts that contain that ingredient (they are also able to search

for people‟s names to find all of that person‟s posts). A post-filtering feature allows users

to narrow-down their search results to help them find exactly what they want.

Medium
A medium-difficulty task is to use Fitter to input and share a recipe. This task

demonstrates the ability for users to post data about what they eat. Users are encouraged

to add photos and recipes to their posts. These posts are shown in the feed and in search

results. Users subscribe to others based on these posts, which encourages users to

frequently post interesting information including photos.

Hard
The hardest task is to use Fitter to find a suggestion for what to eat right now. This task

demonstrates the user‟s ability to browse through and filter the feed of posts. The user is

able to filter the feed based on whose posts are shown and whether or not to only show

posts with recipes. On top of the feed is a set of tabs, which filter whose posts are shown

in the feed (only those who you subscribe to, all or Fitter, only your posts, and the posts

you have marked as favorite).

Interface Changes
After collecting feedback from user tests with our low fidelity prototype, this interactive

prototype includes fixes to the important problems our users pointed out and several

additional features they requested.

Edit/Save Posts
A relatively simple, yet forgotten functionality that the user wanted was the option to

save posts that they liked for easy access at a later point in time as well as an option to

edit their own posts. We decided that you could only edit a post if no one has added

feedback to it (added a comment, “liked”, or “disliked”). This way, the comments and

ratings would stay consistent with the information that was originally attached with the

post. To implement the saving ability, you could hit the “star” button on the post and that

would make it so you could access all your favorite posts from the Favorite tab on the

feed screen.

Figure 1. Old vs. revised post details screen.

Location Field
Users had a hard time dealing with the location input field when adding a post. They were

either confused with what to add or how it was relevant. To solve this we are going to

populate this field with where they are currently based on their GPS location. Rather than

just having an address of where they are, the GPS would have the ability to know if the

user were at a specific restaurant, store, their own home, etc. If they want to, the user can

manually change this field to whatever they want when adding a new post.

Text Input
When inputting text while adding ingredients and steps for recipes, instead of having to

add each ingredient/step individually, user can now add everything at once. This makes

inputting data more fluid and less of a hassle. Also the ingredients section is pre-

populated based on what food item a user enters in the “What” field of the post entry

screen. So for example if they entered in “Spaghetti and Meatballs” in the name field, the

ingredients section would automatically include pasta, meatballs, marinara sauce, and

similar ingredients. If this function gives the user an ingredient they don't need they can

delete it easily by editing the section‟s contents.

Tabs
On the main page we added tabs above the posts (see Figure 2). Users can now filter the

feed‟s posts to show those from people they subscribe to, their own posts, favorite posts,

or a list of posts by anyone on Fitter which shows the most popular posts or posts by the

most popular users. Now that users have the ability to see the popular posts from

everyone on Fitter, they can follow and view posts from popular people such as

celebrities and athletes. This also gives new users somewhere to start from since they can

easily find people to subscribe to right away. Finally, users can look at the posts they

saved with the “favorite” tab and have a quick way to view their own posts with the

“Mine” tab.

Figure 2. Old vs. revised feed screen.

Minor Additional Revisions

Figure 3. Old vs. finalized profile screen(s).

Figure 4. ‘Repost‟ and „Add Photo‟ confirmation dialogue boxes.

Interactive Prototype

Overview
We implemented the interactive prototype as a collection of HTML files, each

representing a core screen of the application. Each screen is laid-out with its own

cascading style sheet. JavaScript is used to boost the interactivity of the screens in order

to support such functionality as searching and feed post filtering. The prototype is best

viewed using the latest version of Mozilla's Firefox Web browser on a Windows or Mac

system with a screen resolution of at least 1024 x 768.

Task Scenarios
1. To find a recipe to use steak in, the user initially enters “steak” into the text box to the

left of the 'Search' button. The user then clicks the 'Search' button and is taken to a

similar-looking screen which displays recent posts that contain the word “steak”. The

user then checks the box next to the phrase “Show only posts containing recipes” to

hide all non-recipe-info-containing posts. Now, like in the first task scenario, the user

clicks on each post to view more details and feedback and then make his decision of

which recipe to use the steak in.

Figure 5. Storyboard for completion of easy task‟s scenario.

2. To input and share a spaghetti and sausage recipe, the user starts by clicking the 'Add

Post' button in the title bar of a feed-containing screen and is taken to a screen which

he can enter the recipe's details. On this screen, the user enters the name of recipe

(“Spaghetti & Sausage”) into the text box underneath the “What did you eat?” text.

The user then presses the 'Add Recipe' button to input ingredients and steps. The user

then presses the 'Add' button underneath the “Ingredients” text and verifies that the

automatically populated ingredients in the editor window's text field are correct. He

then presses the 'Ok' button on the top right corner of the editor window to make the

ingredients appear. The user then presses the 'Add' button underneath the “Steps” text

and verifies that the automatically populated preparation steps in the editor window's

text field are correct. He then presses the 'Ok' button on the top right corner of the

editor window to make the preparation steps appear. The user presses the 'Add Photo'

button and chooses 'Ok' on the dialog box which pops-up to attach a photo of the dish

to the post. Finally, he clicks the 'Post' button on the right side of the title bar to

complete the addition of the post. The user is then taken to a modified version of the

main feed screen which displays his post at the top of the feed. Optionally, he can

click his post to view its details and even use the 'Edit' button on the post's details

screen to return to a populated version of the screen he used to add the new post.

Figure 6. Storyboard for completion of medium task‟s scenario.

3. To find a suggestion for what to eat right now, the user clicks on posts on the main

feed screen he is initially presented with to view more details about the posts. Once

the user has viewed the posts, he can use the feedback (comments, number of likes

and number of dislikes) along with his tastes and cravings to make a decision about

what to eat.

Figure 7. Storyboard for completion of hard task‟s scenario.

Implementation
We used the free trial version of Adobe's Dreamweaver CS4 to rapidly create skeletal

versions of each screen. Dreamweaver was particularly useful here as it allowed us to

visually layout the screens without writing a single line of code. We then used

Dreamweaver's split-screen view of code and visual design to tune the screens and add

content. Once each screen's content was generated, we used Dreamweaver's code view to

add JavaScript code to give each screen more interactive functionality.

While Dreamweaver was initially useful to us, we moved away from it while fine-tuning

the appearance of the prototype's screens, using text editors instead. However, we did

make use of Dreamweaver when we needed to make significant changes to a screen's

layout (rearranging content, adding captions to images, etc.). Dreamweaver's visual

design view of the screens was disappointing, as it didn't support the JavaScript code we

added and also had noticeable style-rendering differences with the Web browser we were

developing the prototype for. Still, Dreamweaver was immensely useful for quickly

getting our prototype off the ground and laying out its screens.

Special Techniques
Since we only intended for the prototype's search functionality to be utilized in the

completion of the second task scenario, we only implemented a search results page for

“steak”. So any time a user searches a feed-containing screen, s/he is taken to the search

results page for “steak”.

We also bootstrapped the ingredient or preparation step information for the third task

scenario's recipe when the user pushes the 'Add' button in the Ingredients or Steps section

on the post entry screen (after pushing the 'Add Recipe' button to display these sections).

Missing Functionality
Of all the functionality we did not implement, the lack of the ability to create your own or

modify existing content is the most noticeable. Users of the prototype cannot add

comments or give positive or negative feedback on posts, nor can they edit their profile

information. Users do not need to be able to do any of these things to complete the

scenarios for the tasks. When adding a new post, changes made to the “What did you

eat?” text field, “Where did you eat it?” text field, and recipe ingredients and steps have

no effect, since all the prototype-generated content in these locations needs to remain as

is in order for users to complete the third task scenario. Also, the user can only attach a

photo of spaghetti and sausage when pushing the 'Add Photo' while creating a new post,

since the only time the user needs to create a new post is to complete the third task

scenario (In the fully-implemented application, the confirmation dialog box for adding a

photo to a post would show the live camera image from the iPhone and then the image

would be captured when the user presses 'Ok').

The prototype is missing profile screens for each of the different users who are associated

with posts or comments. We chose not to implement these, as they provide unnecessary

information which does not contribute to the completion of the task scenarios.

Consequentially, when a user is viewing a feed-containing page and clicks on the user's

image for a post he is taken to the post details screen for that post, not that user's profile

as he would be in the fully-implemented application.

