
Nondeterministic Space is Closed Under Complement

This theorem was proved independently by Neil Immerman and Róbert Szelepcsényi in 1987. Immerman
was an experienced researcher in computational complexity who built his proof based on recent papers that
had proved related but significantly weaker statements. Szelepcsényi was an undergraduate student who
solved the problem from a list of starred problems in a course on proving that the set of context-sensitive
languages is closed under complement, which was an equivalent open problem. Though the ideas were
closely related, the proof we give is very much like Szelepcsényi’s proof.

Using the NL-completeness of PATH , the question is equivalent to the following theorem.

Theorem [Immerman-Szelepcsényi 1987] PATH ∈ NL (and therefore NL = co-NL).

Proof. Suppose that we are given an input 〈G, s, t〉where G = (V,E) is a directed graph with vertices s and
t. We wish to verify that there is no path in G from s to t using a nondeterministic small space algorithm.
Let n = |V |. The standard NL algorithm for PATH consists of guessing and verifying a path from s of
length at most n, one vertex at a time.

The key new idea to show that there isn’t a path is the following: Suppose that we had access to a number
Count = #{v ∈ V | there is a path from s to v in G}.
Then the following nondeterministic algorithm would correctly determine that there is no path from s to t
since it would find Count other vertices reachable from s in G:

NoPath(s, t, n, Count):
reach← 0
for all v ∈ V with v 6= t do

Guess whether or not v is reachable from s by a path of length ≤ n
if Guess is yes then

Guess and verify a path of length at most n from s to v, one vertex at a time
if path is found then
reach← reach+ 1

else
reject

end if
end if

end for
if reach = Count then

accept
else

reject
end if

This algorithm only needs to maintain reach, Count and a constant number of other vertices at a time and
hence it takes only O(log n) space.

1

So all we need to do is to produce the value Count using an O(log n) space nondeterministic algorithm. We
will do this inductively, by showing how to complete Counti, the count of the number of vertices reachable
from s using at most i hops for each i from 0 to n. For convenience we will write the separate values
of Counti for all i but at any point in time the algorithm will at most maintain two values Counti and
Counti+1 in memory.

First observe that Count0 = 1 since s is the one node reachable in 0 hops from s. Now suppose that we have
correctly computed Counti. Then we can use NoPath with appropriate parameters and v in place of t to
verify that there is no path of length at most i from s to a vertex v. The basic idea for computing Counti+1

is that we can guess which vertices should contribute to this count and verify the difficult case that we have
guessed that there is no path of length i + 1 from s to v, by verifying that no predecessor u of v in G is
reachable by a path of length at most i. The following code implements this idea:

ComputeCount(G, s, t):
Count0 ← 1
for i = 0 to n− 1 do

Counti+1 ← 0
for all v ∈ V do

Guess whether or not v is reachable from s in ≤ i+ 1 hops
if Guess is yes then

Guess and verify a path of length at most i+ 1 from s to v, one vertex at a time
if path is found then
Counti+1 ← Counti+1 + 1

else
reject

end if
else if Guess is no then

for all u ∈ V with (u, v) ∈ E do
if NoPath(s, u, i, Counti) rejects then

reject
end if

end for
end if

end for
end for
return Countn.

By applying the above construction to the configuration graph GM,x with s = C0 = (q0x,) and t = Caccept

for any S(n)-space bounded TM M , we obtain the following:

Corollary 1: For every S(n) ≥ log2 n, A ∈ NSPACE(S(n))⇔ A ∈ NSPACE(S(n)).

Corollary 2: The set of languages accepted by linear-bounded automata (equivalently, the set of context-
sensitive languages) is closed under complement.

2

