CSE 431: Introduction to Theory of Computation

Converting to Chomsky Normal Form

Paul Beame

Chomsky Normal Form

Grammar rules allowed

```
A \rightarrow BC where B,C \in V B,C\neqS A \rightarrow a where a \in \Sigma
```

Add new start symbol S_0 and rule $S_0 \rightarrow S$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \epsilon$

For each a ∈Σ
 replace each a that
 appears on the RHS
 of a rule of size ≠ 1
 with new variable U_a
 and add rule U_a→a

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \epsilon$

For each a ∈Σ
 replace each a that
 appears on the RHS
 of a rule of size ≠ 1
 with new variable U_a
 and add rule U_a→a

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid UB$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \epsilon$
 $U \rightarrow a$

For each rule of size >2 of the form $A \rightarrow B_1 B_2 \dots B_k$ add new variables $T_2, ..., T_{k-1}$ and rules $A \rightarrow B_1 T_2$ $T_2 \rightarrow B_2 T_3$ $T_{k-2} \rightarrow B_{k-2} T_{k-1}$ $T_{k-1} \rightarrow B_{k-1} B_k$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid UB$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \epsilon$
 $U \rightarrow a$

For each rule of size >2 of the form $A \rightarrow B_1 B_2 \dots B_k$ add new variables $T_2, ..., T_{k-1}$ and rules $A \rightarrow B_1 T_2$ $T_2 \rightarrow B_2 T_3$ $T_{k-2} \rightarrow B_{k-2} T_{k-1}$ $T_{k-1} \rightarrow B_{k-1} B_k$

$$S_0 \rightarrow S$$
 $S \rightarrow AT \mid UB$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \epsilon$
 $U \rightarrow a$
 $T \rightarrow SA$

- Define set € by
 - For each rule of the form A→ ε add A to
 - Repeat until done:
 If A→BC or A→B
 where B,C ∈ ε then
 add A to ε

$$S_0 \rightarrow S$$

 $S \rightarrow AT \mid UB$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \varepsilon$
 $U \rightarrow a$
 $T \rightarrow SA$

Step 4'

- For each B ∈ ε
 For each rule A→BC
 add the rule A→C
- For each C ∈ ε
 For each rule A→BC
 add the rule A→B
- Remove all A→ ε rules
- If $S_0 \in \varepsilon$ then add $S_0 \to \varepsilon$

$$S_0 \rightarrow S$$

$$S \rightarrow AT \mid UB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \epsilon$$

$$U \rightarrow a$$

$$T \rightarrow SA$$

Step 4'

- For each B ∈ € For each rule A→BC add the rule A→C
- For each C ∈ ε
 For each rule A→BC
 add the rule A→B
- Remove all A→ ε rules
- If $S_0 \in \varepsilon$ then add $S_0 \to \varepsilon$

$$S_0 \rightarrow S$$

 $S \rightarrow AT \mid UB \mid T \mid U$
 $A \rightarrow B \mid S$
 $B \rightarrow b$
 $U \rightarrow a$
 $T \rightarrow SA \mid S$

$$\varepsilon = \{B,A\}$$

- Call rules of form A→B unit rules
- Call all other rules interesting ones
- For each A compute the set D(A) of all other variables reachable from A via unit rules
- Remove all unit rules and add all interesting rules on the RHS of vars in D(A) to the RHS for A

$$S_0 \longrightarrow S \xrightarrow{T} U$$
 $A \longrightarrow B$

$$S_0 \rightarrow S$$
 $S \rightarrow \underline{AT} \mid \underline{UB} \mid T \mid U$
 $A \rightarrow B \mid S$
 $B \rightarrow \underline{b}$
 $U \rightarrow \underline{a}$
 $T \rightarrow \underline{SA} \mid S$

- Call rules of form A→B unit rules
- Call all other rules interesting ones
- For each A compute the set D(A) of all other variables reachable from A via unit rules
- Remove all unit rules and add all interesting rules on the RHS of vars in D(A) to the RHS for A

$$S_0 \longrightarrow S \xrightarrow{T} U$$
 $A \xrightarrow{B}$

$$S_0 \rightarrow S$$

$$S \rightarrow \underline{AT} \mid \underline{UB} \mid T \mid U$$

$$A \rightarrow B \mid S$$

$$B \rightarrow \underline{b}$$

$$U \rightarrow \underline{a}$$

$$T \rightarrow \underline{SA} \mid S$$

$$D(B)=\{B\}$$
 $D(U)=\{U\}$
 $D(T)=D(S)=\{S,T,U\}$
 $D(S_0)=\{S_0,S,T,U\}$
 $D(A)=\{A,B,S,T,U\}$

 $S_0 \longrightarrow S \xrightarrow{T} U$ $A \xrightarrow{B} B$

- Call rules of form A→B unit rules
- Call all other rules interesting ones
- For each A compute the set D(A) of all other variables reachable from A via unit rules
- Remove all unit rules and add all interesting rules on the RHS of vars in D(A) to the RHS for A

$$S_0 \rightarrow$$
 $S \rightarrow \underline{AT} \mid \underline{UB}$
 $A \rightarrow$
 $B \rightarrow \underline{b}$
 $U \rightarrow \underline{a}$
 $D(B) = \{B\} D(U) = \{U\}$
 $D(T) = D(S) = \{S, T, U\}$
 $D(S_0) = \{S_0, S, T, U\}$
 $D(A) = \{A, B, S, T, U\}$

- Call rules of form A→B unit rules
- Call all other rules interesting ones
- For each A compute the set D(A) of all other variables reachable from A via unit rules
- Remove all unit rules and add all interesting rules on the RHS of vars in D(A) to the RHS for A

$$S_0 \longrightarrow S \xrightarrow{T} U$$
 $A \longrightarrow B$

$$S_0 \rightarrow AT \mid UB \mid a \mid SA$$

 $S \rightarrow \underline{AT} \mid \underline{UB} \mid a \mid SA$
 $A \rightarrow AT \mid UB \mid a \mid SA \mid b$
 $B \rightarrow \underline{b}$
 $U \rightarrow \underline{a}$
 $T \rightarrow AT \mid UB \mid a \mid \underline{SA}$

$$D(B)=\{B\}$$
 $D(U)=\{U\}$
 $D(T)=D(S)=\{S,T,U\}$
 $D(S_0)=\{S_0,S,T,U\}$
 $D(A)=\{A,B,S,T,U\}$