CSE 431 Winter 2025 Assignment #7

Reading assignment: Read sections 8.1-8.5, 9.3.

Problems:

- 1. (20 points) Show that TQBF restricted to formulas where the part following the quantifiers is in conjunctive normal form is still PSPACE-complete.
- 2. (20 points) Define SORTED-VERSION as the set $\{\langle a_1, \ldots, a_n, b_1, \ldots, b_n \rangle \mid n \in \mathbb{N} \text{ and } (b_1, \ldots, b_n) \text{ is a sorted version of } (a_1, \ldots, a_n) \text{ (non-decreasing)} \}$. Show that SORTED-VERSION is in L.
- 3. (20 points) Recall that a directed graph G = (V, E) is strongly connected iff for every pair of vertices u, v ∈ V, there exists a path in G from u to v.
 Let STRONGLY-CONNECTED = {⟨G⟩ | G is a strongly connected directed graph}. In this problem you will show that STRONGLY-CONNECTED is NL-complete.
 - (a) Prove that $PATH \leq_m^L STRONGLY$ -CONNECTED. Hint: for your reduction, add a number of "backward" edges.
 - (b) Prove that STRONGLY- $CONNECTED \in NL$.
- 4. (20 points) We stated in class that $UPATH \in L$. Use this to show that $ACYCLIC \in L$ where $ACYCLIC = \{\langle G \rangle \mid \text{undirected graph } G \text{ does not contain a cycle}\}$
- 5. (20 points) The function MAJORITY: $\{0,1\}^* \rightarrow \{0,1\}$ is given by MAJORITY(x) = 1 iff $\geq 1/2$ the bits in x are 1. Give a circuit of size $O(n \log n)$ that computes MAJORIY_n. Hint: First compute the sum of the bits of x using divide and conquer.
- A. (Extra Credit) In this you will show that every Boolean formula F of size s can be converted to an equivalent formula of depth $O(\log s)$.
 - (a) Let T be a rooted binary tree with ℓ leaves. Argue that if you start at the root and repeatedly move to the child with the larger number of below it, you will eventually reach a node v in T such that between $\ell/3$ and $2\ell/3$ leaves of T are below v.
 - (b) A Boolean formula F over ∧, ∨, ¬ is a circuit that is a tree. For any gate g of F we can define the sub-formula G of F rooted at g. We can also define F_{g=0} and F_{g=1} to be the formulas you get from replacing the gate g by the input values 0 and 1, respectively. Describe how to write a new formula for F that adds only a constant number of gates to the three formulas: G, F_{g=0}, F_{g=1}.
 - (c) Use induction and the choose gates g for part (b) corresponding to the 1/3-2/3 nodes from part (a) in order to show that any Boolean formula of size s can be replaced by one with $O(\log s)$ depth (which might be much bigger but still has size $s^{O(1)}$).

- B. (Extra Credit) Creating an NC^1 circuit for MAJORITY_n:
 - (a) Given three natural numbers x, y, z in binary, show how to compute two numbers c and s such that x + y + z = s + c using only constant-depth fan-in 2 circuits (think of s as the sums and c as the carries.
 - (b) Use part (a) recursively to compute two numbers whose total is the number of 1's in the input x and use this to produce an NC^1 circuit for MAJORITY_n