
CSE 431 Winter 2025
Assignment #5

Reading assignment: Read sections 9.3 and 7.5.

Problems:

1. (20 points) Show that if P = NP then every language A ∈ P , except A = ∅ and A = Σ∗, is
NP-complete.

2. (20 points) Let U = {⟨M,x, 1t⟩ | M is an NTM that accepts input x within t steps}. Show
that U is NP -complete.

3. (20 points) Let ϕ be a 3CNF-formula. An NAE assignment to the variables of ϕ is one that
satisfies ϕ but does not set all three literals to true in any clause.

(a) Show that the negation of an NAE assignment for ϕ is also an NAE assignment for ϕ.

(b) Let NAESAT be the set of all 3CNF formulas ϕ that have an NAE assignment. Prove
that NAESAT is NP-complete. For the hardness part use a reduction from 3SAT.
(Hint: Use the function that replaces each clause Ci of ϕ of the form (y1 ∨ y2 ∨ y3)
where y1, y2, y3 are literals by the two clauses (y1 ∨ y2 ∨ zi) and (zi ∨ y3 ∨w) where w
is a single new variable for all clauses and there is one zi variable per original clause.)

4. (20 points) Let 01ROOT = {⟨p⟩ | p is a polynomial in n variables with integer coefficients
such that p(x1, . . . , xn) = 0 for some assignment (x1, . . . , xn) ∈ {0, 1}n}.

(a) Show that 01ROOT ∈ NP .

(b) Show that 3SAT ≤P
m 01ROOT . (HINT: First figure out how to convert each clause

into a polynomial that evaluates to 0 iff the clause is satisfied. Then create a polynomial
q that evaluates to 0 if and only if all of its inputs are 0. Finally, figure out how to
combine the individual polynomials for the clauses using the polynomial q.

5. (20 points) If you take product-of-sums (CNF) or sum-of-products (DNF) to represent some
Boolean function on n bits, there are 2n rows in the truth table (number of possible clauses
or terms). For each row, there is a size n OR required in the usual product-of-sums CNF
construction. This yields a circuit of size O(n2n) for any Boolean function on n bits. In this
question you will see that you can do better.

A (Boolean) decision tree defined on inputs x ∈ {0, 1}n is a rooted binary tree (not necessar-
ily complete) with each internal node labeled by some input variable xi for i ∈ {1, . . . , n}
and each leaf labeled by an output value, 0 or 1.

We define the computation of a decision tree as follows:

1



• The decision tree computation starts at the root of the tree.

• At a node v labeled xi, if the value of xi is 0, the computation moves to the left child
of v and if the value of xi is 1 it moves to the right child of v.

• The output of the tree on input x is the label of the leaf reached by the computation.

A decision tree T computes a function f : {0, 1}n → {0, 1} iff for all x ∈ {0, 1}n the leaf
label reached by x is f(x).

(a) Show that any Boolean function on n bits can be computed by some decision tree with
at most O(2n) nodes.

(b) Design a circuit whose graph is a tree (you get to write input bits in multiple places)
that computes the following function on 3 bits

h(a, b, c) =

{
b if a = 0

c if a = 1.

(c) Show that that every Boolean function can be computed in size O(2n) by showing if a
Boolean function f can be computed by with S nodes, then there is a circuit C of size
O(S) computing f such that each internal gate of C is used as the input to at most one
other gate. (That is, the circuit is a tree.)

A. (Extra Credit) In this problem you will save a factor of O(n) in the worst-case circuit size
for computing Boolean functions on n-bit inputs by using circuits that aren’t trees and that
get to re-use their computed values for more than one higher level gate.

(a) Given a circuit C and g a gate of G, we can define another circuit Cg where the gate
g is now designated as the output gate. Produce a construction, re-using internal gate
values, that inductively on t builds a circuit Ct defined on {0, 1}t, with the following
properties:

* Ct has size O(22
t
) and exactly 22

t top-level gates Gt such that

* for each Boolean function h on {0, 1}t there is exactly one circuit Cg
t that computes

h and has g ∈ Gt .

(b) In the construction from Problem 5, there can be many gates computing the same func-
tion of the input, particularly at the lower levels. Here, you will avoid repeating such
circuits. Combine the construction from Problem 5 for the top n− t levels and that of
part (a) in this problem for the lowest t levels for t = log2 n− 1 (rounded down to the
nearest integer) to show that for every Boolean function f on n bits there is a circuit of
size O(2n/n) computing f .

2


