CSE 431 Winter 2025
Assignment #4

Reading assignment: Read Chapter 7 of Sipser’s text up to the start of the proof of the Cook-
Levin Theorem. Then read section 9.3 which gives the proof of the Cook-Levin Theorem that we
will do.

Problems:

1.
2.

(20 points) Prove that EQpr4 is in P.

(20 points) Prove that P is closed under intersection, concatenation, and star. (You previ-
ously proved that the sets of decidable and Turing-recognizable languages are closed under
these same operations.) Hint: Use ideas similar to those for the CKY algorithm when needed.

. (20 points) Define GRAPH-HOMOMORPHISM={(G, H) | G and H are directed graphs

and there is a mapping ¢ from the vertices of G to the vertices of H such that:

* (u,v)is an edge in G if and only if (¢(u), p(v)) is an edge in H and

» for every vertex w in H there is a vertex v in G such that p(v) = w}.
Prove that GRAPH-HOMOMORPHISM is in N P.
(20 points) Prove that N P is closed under intersection, concatenation, and star.
(20 points) Prove that A7y, is N P-hard.

(Extra Credit) In this question you will show that if an ordinary 1-tape TM M has running
time o(n logn) then L(M ) must be regular.

A crossing-sequence is the sequence of states on which, and directions from which, a bound-
ary between two cells is crossed during the course of a computation.

(a) Show that if the lengths of all the crossing sequences for a TM are bounded by some
constant & (independent of the input length) then L(M) is regular. Do this by building
an NFA N to recognize L(M).

(b) Use a pigeonhole argument to argue that for any TM running in o(nlogn) time on
any sufficiently long input, there must exist two different cell boundaries for cells that
originally contained the input that have precisely the same crossing sequence in the
computation on that input.

(c) Show that if a 1-tape TM M has crossing sequences of arbitrarily large size then it
cannot run in o(n log n) time. To do this, consider a minimal-length string that produces
a long crossing sequence when M is run on it and use part (b) to derive a contradiction
by splicing out a piece of the input string using the repeated crossing sequence.

— Finally, put the pieces together to produce the claimed result.



