
CSE 431
Introduction to the Theory of Computation

Sample Midterm - Solutions

1. (18 points) For each of the following questions answer True, False, or Unknown and briefly
JUSTIFY your answer.

(a) It is undecidable to tell, given two Turing machines M1 and M2, whether or not L(M1)
is the complement of L(M2).

Solution:

True: We use this to solve ETM by converting the input ⟨M⟩ to the pair ⟨M,MΣ∗⟩,
where MΣ∗ is a trivial machine that always accepts, and using the resulting answer
(this is a reduction from ETM). This is correct since ∅ is the complement of Σ∗.

(b) There is a regular language whose complement is undecidable.

Solution:

False: The complement of any regular language is also regular and all regular languages
are decidable.

(c) There is no Turing machine that decides whether or not two context-free grammars
generate the same language.

Solution:

True: One could use this to decide ALLCFG by setting one of the grammars to a trivial
grammar that generates of Σ∗. However ALLCFG is undecidable.

2. (20 points) Show that the language

BH = {⟨M⟩ | Turing Machine M halts when started at the left end of a blank tape}

is undecidable.

Solution:

We prove that HALTTM ≤m BH . Since HALTTM is undecidable, this is enough.

Given a pair ⟨M,w⟩ encoding a Turing machine M and input w to M , the function f will
create a new TM (a familiar TM): Mw which ignores its input x and runs M on the hardcoded
value w and does exactly what M does.

f is certainly computable. It remains to show that f is a correct reduction.

Now if ⟨M,w⟩ is in HALTTM then M halts on input w and so Mw will halt on all inputs,
including empty string input which corresponds to a blank tape. Therefore ⟨Mw⟩ is in BH .

1

On the other hand if ⟨M,w⟩ is not in HALTTM then M runs forever on input w and so Mw

will run forever on all inputs, including empty string input which corresponds to a blank
tape. Therefore ⟨Mw⟩ is not in BH .

Therefore this is a correct reduction.

3. (20 points)

(a) Give the full formal definition of what it means for a set A to be mapping reducible to
a set B.

(b) Prove that if a set C is co-Turing-recognizable but not decidable then it cannot satisfy
C ≤m ATM .

Solution (b):

If C ≤m ATM then C must be Turing-recognizable because ATM is Turing-recognizable.
Therefore C is both Turing-recognizable and co-Turing-recognizable and hence decid-
able, which is a contradiction.

4. (22 points)

(a) State the Church-Turing Thesis.

(b) Why can’t we ever prove the Church-Turing Thesis?

(c) What is the evidence for it?

(d) A queue automaton is a bit like a Turing machine except that it has a single queue of
symbols instead of a tape. The input followed by a single blank symbol is initially in the
queue with the first character at the head of the queue. In each step the queue automaton
pops (reads and removes the symbol) at the head of the queue,o and then, based on that
symbol and the current state, changes state and pushes one or two symbols onto the tail
of the queue.
Give the rough ideas for why a queue automaton is equivalent to a TM. (The tricky part
is seeing how you can simulate TM moves in each direction on the queue automaton.)

Solution (d):

The general idea is to use the queue together with the state of the queue automaton to
keep track of the TM configuration. In general, configuration uqav will be represented
as the queue string av#u where the head is on the a. The state will hold q.
To do a right move δ(q, a) = (p, b, R) of the TM the queue machine will remove a
from the head, change to state p, and add b to the tail, yielding queue contents v#ub.
To do a left move δ(q, a) = (p, b, L) of the TM, suppose that the queue contents are
av#uc. The queue machine will remove a from the head, add $b to the tail to reach
v#uc$b and record in its state that it will want to move to state p. Before that can
happen it will move one character at a time from the head to the tail, provided that the
following character is not $. (The putting on the tail will be one step after reading from

2

the head.) At this point, it can end up with $bv#u and if we allow editing the head
of the queue, we would replace the $ by the c it has remembered yielding cbv#u. (If
editing of the head is not allowed, the $ can be read immediately and the remembered
c can be used to trigger the next state change.)

5. (20 points) If language L is defined over alphabet Σ then the set of prefixes of strings in L,

Prefix(L) = {x | there exists a y ∈ Σ∗ such that xy ∈ L}.

(a) Show that if L is Turing-recognizable then Prefix(L) is Turing-recognizable.

Solution:

There are three different natural constructions:

(1) Since L is Turing-recognizable there is an enumerator E for L. We create a recog-
nizer M ′ for Prefix(L) as follows:
M ′: ”On input x run E but whenever E outputs a string w, check to see whether
x is a prefix of w; if so, accept.”

(2) Since L is Turing-recognizable there is an enumerator E for L. We create an
enumerator E ′ for Prefix(L) as follows.
E ′: ”Run enumerator E but whenever E prints a string w, E ′ also prints all prefixes
of w.”

(3) (Dovetail) Given a TM M that recognizes L, create a recognizer M ′ for Prefix(L)
as follows:
M ′: ”On input x, for t = 1 to ∞: for all y ∈ Σ∗ with length at most t, run M on
input xy for at most t steps; if M accepts, then accept”

(b) Intuitively, why doesn’t the method you used for part (a) also show that if L is decidable
then Prefix(L) is decidable?

Solution:

This depends on the answer from part (a); If (1) then if there may be no such w, in
which case the algorithm will run forever; if (2) then the list of strings is definitely not
in lexicographic order even if the w are, because the prefixes are very short; if (3) then
again, the algorithm will run forever if no y exists.¡/i¿

(c) (BONUS - Do not attempt unless you are finished early and have already checked over
your paper) Actually come up with an example where you can prove that L is decidable
but Prefix(L) is not decidable.

3

