
Solutions to some sample 431 final exam questions

2. We prove that ATM ≤m L2 as follows:

The mapping reduction f takes input ⟨M,w⟩ and produces output ⟨Mw⟩ where Mw is the Turing machine
defined in class but is now over the input domain {0, 1, 2}∗.

That is Mw on input x, ignores x and runs M on input w and does what M would do.

By construction L(Mw) =

{
{0, 1, 2}∗ if M accepts w

∅ if not.

There will be a 2 in L(Mw) iff M accepts w iff ⟨M,w⟩.

4. (b) This algorithm is a specific algorithm that does not capture all algorithms that could be tried to solve
the problem. For example, the same algorithm as given could be used to solve matrix equations modulo 2
and would take exponential time to do so; however, in that case there is an alternative algorithm, Gaussian
elimination, that can be used to solve the matrix equations problem in polynomial time.

5. We show that SET -PARTITION is NP-complete.

1. SET -PARTITION ∈ NP:

(a) Guess a binary string of length n representing a subset S ⊆ {1, . . . , n}.

1

(b) Verify that
∑

i∈S xi =
∑

i/∈S xi.

(c) This polynomial time to check since we can compute the two sums in polynomial times.

2. We show that SET -PARTITION is NP-hard by showing that SUBSET -SUM ≤p
m SET -PARTITION .

(a) On input ⟨x1, . . . , xm, t⟩ for SUBSET -SUM , define M =
∑n

i=1 xi. Assume that t ≤ M – if not
we simply map the input to {1, 2}. Otherwise, using the hint, remove t, let n = m + 2 and add
two extra numbers xn−1 = M + t and xn = 2M − t.

(b) The computation is clearly polynomial time since it simply requires the computation of M and
the two extra numbers.

(c) Correctness (⇒): Suppose that ⟨x1, . . . , xm, t⟩ ∈ SUBSET -SUM . Then there is a subset S′ ∈
{1, . . . ,m} such that

∑
i∈S′ xi = t and t ≤ M . Therefore the output has n = m + 2 values

and we define S ⊆ {1, . . . , n} by S = S′ ∪ {n}. Then
∑

i∈S xi = t + 2M − t = 2M and∑
i/∈S xi = M+t+

∑
i≤m,i/∈S′ = M+t+M−t = 2M and hence ⟨x1, . . . , xn⟩ ∈ SET -PARTITION

as required.

(d) Correctness (⇐): Suppose that ⟨x1, . . . , xn⟩ ∈ SET -PARTITION Then we know that we have
a subset S ∈ {1, . . . , n} such that

∑
i∈S xi =

∑
i/∈S xi. By definition of the reduction we also

know that the sum of all the elements is 4M so the sum of each side is 2M . Because xn−1 and
xn add up to 3M , which is too large, we can’t have both elements in S or both elements not
in S. Therefore, one of S or S contains n but not n − 1. Assume, without loss of generality
that S does. (If not, simply complement S.) Then define S′′ = S − {n} and observe that
S′′ ⊆ {1, . . . ,m}. Then 2M =

∑
i∈S xi = 2M − t +

∑
i∈S′′ xi. It follows that

∑
i∈S′′ xi = t and

hence ⟨x1, . . . , xm, t⟩ ∈ SUBSET -SUM as required.

6. We show that TSP is NP-complete.

1. TSP ∈ NP:

(a) Guess a length n sequence of integers i1, . . . in, each in the range 1 to n.

(b) Verify that all the numbers are different and that

ci1i2 + · · · cin−1in + cini1 ≤ K.

(c) This polynomial-time to check.

2. We show that TSP is NP-hard by showing that DHAMCY CLE ≤p
m TSP .

(a) For the reduction, on input an undirected graphG = (V,E), number the vertices ofG as v1, . . . , vn,
define the cost matrix C by

cij =

{
1 if (vi, vj) ∈ E

2 if (vi, vj) /∈ E

and set K = n.

(b) The computation is clearly polynomial time.

(c) Correctness (⇒): Suppose that G has a directed Hamiltonian cycle. Then the list of those indices
in the order along the cycle starting at any spot will yield a TSP tour of cost n. Therefore all of
the n edges along the cycle will have cost 1 in the TSP instance so their total cost will be n.

(d) Correctness (⇐): Suppose that (c,K) is a yes instance for TSP . Since there are n distances cij
contributing to the sum and each distance in C is at least 1, if they are to sum to at most K = n,
then every such edge counted must have cij = 1. By definition, this means that (vi, vj) ∈ E for
all n edges. These edges form a directed Hamiltonian cycle in G.

2

7. Consider the following algorithm M ′:

On input ⟨M,a, b⟩
For each string x ∈ Σ∗ in lexicographic order do

Simulate M on input x for a|x|2 + b steps
If M has not yet halted then accept.

End For

If there is some string x where M runs for more than a · |x|2 + b steps then this algorithm will accept.
Otherwise, M ′ will run forever. Therefore L(M ′) = L and hence L is Turing-recognizable.

3

