Solutions to some sample 431 final exam questions

1. Consider the following list of properties that might apply to the stated language.

T-rec: The language is Turing-recognizable.
Dec: The language is decidable.
NP: The language is in NP.
NP-c: The language is NP-complete.

\[\mathcal{P} \text{: The language is in } \mathcal{P}. \]

Circle all the properties that you are certain are true.
\[\times \text{ out all the properties that you are certain are false.} \]

NOTE: You may not be able to do either for some properties.

(a) \(\{ (M, w) \mid \text{Turing machine } M \text{ accepts } w \} \)
(b) \(\{ (M, w) \mid \text{Turing machine } M \text{ accepts } w \text{ in at most } |w| \text{ steps} \} \)
(c) \(\{ (M, w) \mid \text{Turing machine } M \text{ accepts } w \text{ in at most } 2^{|w|} \text{ steps} \} \)
(d) \(\{ (M, w) \mid \text{Turing machine } M \text{ does not accept } w \} \)
(e) \(L(\alpha) \text{ for some regular expression } \alpha \)
(f) \(\{ (F) \mid F \text{ is a 3-CNF formula which evaluates to true on some truth assignment} \} \)
(g) \(\{ (F, x) \mid F \text{ is a 3-CNF formula which evaluates to true on truth assignment } x \} \)
(h) \(\{ (F) \mid F \text{ is a propositional logic tautology} \} \)
(i) \(\{ (G, H) \mid G \text{ and } H \text{ are isomorphic graphs} \} \)

5. We show that \(\text{SET-PARTITION} \) in NP-complete.

1. \(\text{SET-PARTITION} \in \text{NP}: \)

 (a) Guess a binary string of length \(n \) representing a subset \(S \subseteq \{1, \ldots, n\} \).

 (b) Verify that \(\sum_{i \in S} x_i = \sum_{i \notin S} x_i \).

 (c) This polynomial time to check since we can compute the two sums in polynomial times.

2. We show that \(\text{SET-PARTITION} \) is NP-hard by showing that \(\text{SUBSET-SUM} \leq^p \text{SET-PARTITION} \).

 (a) On input \(\langle x_1, \ldots, x_m, t \rangle \) for \(\text{SUBSET-SUM} \), define \(M = \sum_{i=1}^{n} x_i \). Assume that \(t \leq M \) – if not we simply map the input to \(\{1, 2\} \). Otherwise, using the hint, remove \(t \), let \(n = m + 2 \) and add two extra numbers \(x_{n-1} = M + t \) and \(x_n = 2M - t \).

 (b) The computation is clearly polynomial time since it simply requires the computation of \(M \) and the two extra numbers.

 (c) Correctness (\(\Rightarrow \)): Suppose that \(\langle x_1, \ldots, x_m, t \rangle \in \text{SUBSET-SUM} \). Then there is a subset \(S' \in \{1, \ldots, m\} \) such that \(\sum_{i \in S'} x_i = t \) and \(t \leq M \). Therefore the output has \(n = m + 2 \) values and we define \(S \subseteq \{1, \ldots, n\} \) by \(S = S' \cup \{n\} \). Then \(\sum_{i \in S} x_i = t + 2M - t = 2M \) and \(\sum_{i \notin S} x_i = M + t + \sum_{i \leq m, i \notin S'} = M + t + M - t = 2M \) and hence \(\langle x_1, \ldots, x_n \rangle \in \text{SET-PARTITION} \) as required.

 (d) Correctness (\(\Leftarrow \)): Suppose that \(\langle x_1, \ldots, x_n \rangle \in \text{SET-PARTITION} \) Then we know that we have a subset \(S \in \{1, \ldots, n\} \) such that \(\sum_{i \in S} x_i = \sum_{i \notin S} x_i \). By definition of the reduction we also
know that the sum of all the elements is $4M$ so the sum of each side is $2M$. Because x_{n-1} and x_n add up to $3M$, which is too large, we can’t have both elements in S or both elements not in S. Therefore, one of S or \overline{S} contains n but not $n-1$. Assume, without loss of generality that S does. (If not, simply complement S.) Then define $S'' = S - \{n\}$ and observe that $S'' \subseteq \{1, \ldots, m\}$. Then $2M = \sum_{i \in S} x_i = 2M - t + \sum_{i \in S''} x_i$. It follows that $\sum_{i \in S''} x_i = t$ and hence $(x_1, \ldots, x_m, t) \in \text{SUBSET-SUM}$ as required.