CSE 431 Winter 2022 Assignment #6

Due: Thursday February 24, 2022, 11:59 PM

Reading assignment: Read sections 9.3 and 7.5 of Sipser's text.

Problems:

- (20 points) Let U = { (M, x, 1^t) | M is an NTM that accepts input x within t steps}. Show that U is NP-complete. (Hint: You don't need the Cook-Levin theorem for this question.)
- (20 points) In class, we saw that almost all Boolean functions f : {0,1}ⁿ → {0,1} require circuits of size at least Ω(2ⁿ/n). In this problem, you will show that this is not too far from optimal for circuits using 2-input ∧ and ∨ gates and ¬ gates. (Getting a matching upper bound is an extra credit problem below.)
 - (a) Show how a (canonical) sum-of-products (equivalently disjunction normal form (DNF)) represention can be used to give a circuit that computes any *n*-bit function f. Using O notation, what size bound do you get for your circuit as a function of n?
 - (b) Improve the previous result and show via induction that there is a constant c such that every n-bit Boolean function has a circuit that computes it with at most $c \cdot 2^n$ gates.
- 3. (20 points) Let ϕ be a 3CNF-formula. An NAE assignment to the variables of ϕ is one that satisfies ϕ but does not set all three literals to true in any clause.
 - (a) Show that the negation of an NAE assignment for ϕ is also an NAE assignment for ϕ .
 - (b) Let NAESAT be the set of all 3CNF formulas φ that have an NAE assignment. Prove that NAESAT is NP-complete. For the hardness part use a reduction from 3SAT.
 (Hint: Use the function that replaces each clause C_i of φ of the form (y₁ ∨ y₂ ∨ y₃) where y₁, y₂, y₃ are literals by the two clauses (y₁ ∨ y₂ ∨ z_i) and (z_i ∨ y₃ ∨ w) where w is a single new variable for all clauses and there is one z_i variable per original clause.)
- 4. (20 points) For any set of people V, an *influential subset* is a set S ⊆ V of people so that everyone in V is either in S, has a friend in S, or both. We can represent the friendship relationships between pairs of people by edges in an undirected graph G with vertices V so we carry over the definition of influential subset to subsets of vertices of such graphs. Let INFLUENTIAL-SUBSET = {⟨G, k⟩ | G has an influential subset S ⊆ V of size ≤ k}. Show that INFLUENTIAL-SUBSET is NP-complete, using the NP-hardness of VERTEX-COVER.

(Hint: In the reduction from *VERTEX-COVER*, add vertices and edges to the original graph using precisely one extra vertex per original edge.)

- 5. (20 points) Let $01ROOT = \{\langle p \rangle \mid p \text{ is a polynomial in } n \text{ variables with integer coefficients} such that <math>p(x_1, \ldots, x_n) = 0$ for some assignment $(x_1, \ldots, x_n) \in \{0, 1\}^n\}$.
 - (a) Show that $01ROOT \in NP$.
 - (b) Show that $3SAT \leq_m^P 01ROOT$. (HINT: First figure out how to convert each clause into a polynomial that evaluates to 0 iff the clause is satisfied. Then create a polynomial q that evaluates to 0 if and only if all of its inputs are 0. Finally, figure out how to combine the individual polynomials for the clauses using the polynomial q.
- 6. (Extra credit) In this problem you will prove the optimality of the $\Omega(2^n/n)$ lower bound on circuit size for computing *n*-bit Boolean functions. To do this, we generalize our definitions to allow a single circuit that computes multiple functions at once: we simply have multiple nodes designated as output nodes, one per function being computed. Its circuit size remains the total number of gates.
 - (a) Let k be the smallest integer such that $2^k \ge n/2$. Show that a single circuit that simultaneously computes all possible Boolean functions on inputs $x_1, ..., x_k$ requires only $O(n \cdot 2^{n/2})$ gates in total.
 - (b) Let $\ell \ge k$ and consider any fixed sequence of bits to be assigned to the last $n \ell$ input positions $b = (b_{\ell+1}, ..., b_n) \in \{0, 1\}^{n-\ell}$. To emphasize that these bits are fixed, we define

$$f_b(x_1, \dots, x_\ell) = f(x_1, \dots, x_\ell, b_{\ell+1}, \dots, b_n).$$

Define the set of functions

$$\mathcal{F}_{\ell} := \left\{ f_b(x_1, ..., x_{\ell}) : b \in \{0, 1\}^{n-\ell} \right\}.$$

Suppose that you have a single circuit that computes all functions in $\mathcal{F}_{\ell-1}$. Show that you only need an additional $O(2^{n-\ell})$ gates to build a single circuit that computes every function in \mathcal{F}_{ℓ} at once.

(c) Use the previous two parts to conclude that every Boolean function has a circuit that computes it with $O(2^n/n)$ gates.