CSE 431 Winter 2022

 Assignment \#6

 Assignment \#6}

Due: Thursday February 24, 2022, 11:59 PM

Reading assignment: Read sections 9.3 and 7.5 of Sipser's text.

Problems:

1. (20 points) Let $U=\left\{\left\langle M, x, 1^{t}\right\rangle \mid M\right.$ is an NTM that accepts input x within t steps $\}$. Show that U is $N P$-complete. (Hint: You don't need the Cook-Levin theorem for this question.)
2. (20 points) In class, we saw that almost all Boolean functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ require circuits of size at least $\Omega\left(2^{n} / n\right)$. In this problem, you will show that this is not too far from optimal for circuits using 2-input \wedge and \vee gates and \neg gates. (Getting a matching upper bound is an extra credit problem below.)
(a) Show how a (canonical) sum-of-products (equivalently disjunction normal form (DNF)) represention can be used to give a circuit that computes any n-bit function f. Using O notation, what size bound do you get for your circuit as a function of n ?
(b) Improve the previous result and show via induction that there is a constant c such that every n-bit Boolean function has a circuit that computes it with at most $c \cdot 2^{n}$ gates.
3. (20 points) Let ϕ be a 3CNF-formula. An NAE assignment to the variables of ϕ is one that satisfies ϕ but does not set all three literals to true in any clause.
(a) Show that the negation of an NAE assignment for ϕ is also an NAE assignment for ϕ.
(b) Let NAESAT be the set of all 3CNF formulas ϕ that have an NAE assignment. Prove that NAESAT is NP-complete. For the hardness part use a reduction from 3SAT.
(Hint: Use the function that replaces each clause C_{i} of ϕ of the form ($y_{1} \vee y_{2} \vee y_{3}$) where y_{1}, y_{2}, y_{3} are literals by the two clauses $\left(y_{1} \vee y_{2} \vee z_{i}\right)$ and $\left(\overline{z_{i}} \vee y_{3} \vee w\right)$ where w is a single new variable for all clauses and there is one z_{i} variable per original clause.)
4. (20 points) For any set of people V, an influential subset is a set $S \subseteq V$ of people so that everyone in V is either in S, has a friend in S, or both. We can represent the friendship relationships between pairs of people by edges in an undirected graph G with vertices V so we carry over the definition of influential subset to subsets of vertices of such graphs.
Let $I N F L U E N T I A L-S U B S E T=\{\langle G, k\rangle \mid G$ has an influential subset $S \subseteq V$ of size $\leq k\}$. Show that IN FLU ENTIAL-SU BSET is NP-complete, using the NP-hardness of VERTEXCOVER.
(Hint: In the reduction from $V E R T E X-C O V E R$, add vertices and edges to the original graph using precisely one extra vertex per original edge.)
5. (20 points) Let $01 R O O T=\{\langle p\rangle \mid p$ is a polynomial in n variables with integer coefficients such that $p\left(x_{1}, \ldots, x_{n}\right)=0$ for some assignment $\left.\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}\right\}$.
(a) Show that $01 R O O T \in N P$.
(b) Show that $3 S A T \leq_{m}^{P} 01 R O O T$. (HINT: First figure out how to convert each clause into a polynomial that evaluates to 0 iff the clause is satisfied. Then create a polynomial q that evaluates to 0 if and only if all of its inputs are 0 . Finally, figure out how to combine the individual polynomials for the clauses using the polynomial q.
6. (Extra credit) In this problem you will prove the optimality of the $\Omega\left(2^{n} / n\right)$ lower bound on circuit size for computing n-bit Boolean functions. To do this, we generalize our definitions to allow a single circuit that computes multiple functions at once: we simply have multiple nodes designated as output nodes, one per function being computed. Its circuit size remains the total number of gates.
(a) Let k be the smallest integer such that $2^{k} \geq n / 2$. Show that a single circuit that simultaneously computes all possible Boolean functions on inputs x_{1}, \ldots, x_{k} requires only $O\left(n \cdot 2^{n / 2}\right)$ gates in total.
(b) Let $\ell \geq k$ and consider any fixed sequence of bits to be assigned to the last $n-\ell$ input positions $b=\left(b_{\ell+1}, \ldots, b_{n}\right) \in\{0,1\}^{n-\ell}$. To emphasize that these bits are fixed, we define

$$
f_{b}\left(x_{1}, \ldots x_{\ell}\right)=f\left(x_{1}, \ldots, x_{\ell}, b_{\ell+1}, \ldots, b_{n}\right)
$$

Define the set of functions

$$
\mathcal{F}_{\ell}:=\left\{f_{b}\left(x_{1}, \ldots, x_{\ell}\right): b \in\{0,1\}^{n-\ell}\right\} .
$$

Suppose that you have a single circuit that computes all functions in $\mathcal{F}_{\ell-1}$. Show that you only need an additional $O\left(2^{n-\ell}\right)$ gates to build a single circuit that computes every function in \mathcal{F}_{ℓ} at once.
(c) Use the previous two parts to conclude that every Boolean function has a circuit that computes it with $O\left(2^{n} / n\right)$ gates.

