CSE 431 Winter 2022

 Assignment \#4

 Assignment \#4}

Due: Thursday February 3, 2022, 11:59 PM
Reading assignment: Read Sections 6.3 of Sipser's text.

Problems:

1. (20 points) Prove that the language $\overline{E_{T M}}$ is Turing-recognizable.
2. (20 points) A language B is called re.e-complete iff (a) B is Turing-recognizable (equivalently, recursively enumerable) and (b) For all Turing-recognizable languages $A, A \leq_{m} B$. Prove that $A_{T M}$ is r.e.-complete.
3. (20 points) Show that A is decidable if and only if $A \leq_{m}\left\{1^{n} \mid n\right.$ is even $\}$.
4. (20 points) Let $J=\left\{w \mid w=0 x\right.$ for some $x \in A_{T M}$ or $w=1 y$ for some $\left.y \in \overline{A_{T M}}\right\}$. Show that neither J nor \bar{J} is Turing-recognizable.
5. (20 points) Which of the following problems are decidable? Justify each answer:
(a) Given a Turing machine M, does M accept 1010 ?
(b) Given Turing machines M and N, is $L(N)$ the complement of $L(M)$?
(c) Given a Turing machine M, integers a and b and an input x, does M run for more than $a|x|^{2}+b$ steps on input x ?
6. (Extra Credit) Show that the following problem is undecidable: Given a Turing machine M and integers a and b, does there exist an input x on which M runs for more than $a|x|^{2}+b$ steps on input x ?
7. (Extra Credit) We showed previously that neither $E Q_{T M}$ nor its complement is Turingrecognizable. Your problem is to show that, despite this, if you had a magic black box that decided $A_{T M}$ that you could call repeatedly on different inputs, then you could recognize $\overline{E Q_{T M}}$.
