CSE 431 Winter 2022

 Assignment \#2

 Assignment \#2}

Due: Thursday January 20, 2022, 11:59 PM

Reading assignment: Read Chapter 4 of Sipser's textbook.

Problems:

1. (20 points) Prove that a language is decidable if and only if there is an enumerator that enumerates it in lexicographic order.
(Hint: Handle the case where the language is finite separately from the case where it is infinite.)
2. (10 points) Use the result of question 1 to show that any infinite Turing-recognizable language contains an infinite decidable subset.
3. (10 points) Prove that the language
$A L L_{D F A}=\left\{\langle M\rangle \mid M\right.$ is a DFA with alphabet Σ and $\left.L(M)=\Sigma^{*}\right\}$ is decidable.
4. (30 points) Suppose that A and B are decidable languages. Prove that the following languages are also decidable. (The definitions of the latter two are from Chapter 1 and all are included for convenience.)
(a) $A \cap B=\{x \mid x \in A$ and $x \in B\}$.
(b) $A B=\{x \mid \exists y \in A$ and $z \in B$ such that $x=y z\}$.
(c) $A^{*}=\left\{x \mid \exists k \geq 0\right.$ and $y_{1}, \ldots, y_{k} \in A$ such that $\left.x=y_{1} \cdots y_{k}\right\}$.
5. (30 points) Suppose that A and B are Turing-recognizable languages. Prove that the following languages are also Turing-recognizable:
(a) $A B$.
(b) $\operatorname{Pref}(A)=\{x \mid \exists y$ with $x y \in A\}$, the set of all prefixes of strings in A.
6. (Extra credit) Let C be a language. Prove that C is Turing-recognizable if and only if there is a decidable language D such that $C=\{x \mid \exists y$ such that $\langle x, y\rangle \in D\}$.
