CSE 431: Introduction to Theory of Computation

Converting to Chomsky Normal Form

Paul Beame

Chomsky Normal Form

- Grammar rules allowed
$A \rightarrow B C$ where $B, C \in V \quad B, C \neq S$
$\mathrm{A} \rightarrow \mathrm{a} \quad$ where $\mathrm{a} \in \Sigma$
$S \rightarrow \varepsilon$

Step 1

- Add new start symbol S_{0} and rule $S_{0} \rightarrow S$
$S_{0} \rightarrow S$
$S \rightarrow$ ASA $\mid a B$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$

Step 2

- For each a $\in \Sigma$ replace each a that appears on the RHS of a rule of size $\neq 1$ with new variable U_{a} and add rule $\mathrm{U}_{\mathrm{a}} \rightarrow \mathrm{a}$
$S_{0} \rightarrow S$
$S \rightarrow$ ASA $\mid a B$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$

Step 2

- For each a $\in \Sigma$ replace each a that appears on the RHS of a rule of size $\neq 1$ with new variable U_{a} and add rule $\mathrm{U}_{\mathrm{a}} \rightarrow \mathrm{a}$
$S_{0} \rightarrow S$
$S \rightarrow$ ASA | UB
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$
$\mathbf{U} \rightarrow \mathbf{a}$

Step 3

- For each rule of size
>2 of the form
$A \rightarrow B_{1} B_{2} \ldots B_{k}$ add new variables
T_{2}, \ldots, T_{k-1} and rules
$\mathrm{A} \rightarrow \mathrm{B}_{1} \mathrm{~T}_{2}$
$\mathrm{T}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{~T}_{3}$
$\begin{aligned} & \mathrm{T}_{\mathrm{k}-2} \rightarrow \mathrm{~B}_{\mathrm{k}-2} \mathrm{~T}_{\mathrm{k}-1} \\ & \mathrm{~T}_{\mathrm{k}-1} \rightarrow \mathrm{~B}_{\mathrm{k}-1} \mathrm{~B}_{\mathrm{k}}\end{aligned}$
$S_{0} \rightarrow S$
$S \rightarrow$ ASA | UB
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$
$\cup \rightarrow \mathrm{a}$

Step 3

- For each rule of size >2 of the form $\mathrm{A} \rightarrow \mathrm{B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{k}} \quad$ add new variables
T_{2}, \ldots, T_{k-1} and rules
$\mathrm{A} \rightarrow \mathrm{B}_{1} \mathrm{~T}_{2}$
$\mathrm{T}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{~T}_{3}$
$\begin{aligned} & \mathrm{T}_{\mathrm{k}-2} \rightarrow \mathrm{~B}_{\mathrm{k}-2} \mathrm{~T}_{\mathrm{k}-1} \\ & \mathrm{~T}_{\mathrm{k}-1} \rightarrow \mathrm{~B}_{\mathrm{k}-1} \mathrm{~B}_{\mathrm{k}}\end{aligned}$
$S_{0} \rightarrow S$
$S \rightarrow A T \mid U B$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$
$U \rightarrow \mathrm{a}$
T \rightarrow SA

Step 4

- Define set ε by
- For each rule of the form $A \rightarrow \varepsilon$ add A to ε
- Repeat until done: If $A \rightarrow B C$ or $A \rightarrow B$ where $B, C \in \varepsilon$ then add A to ε
$S_{0} \rightarrow S$
$S \rightarrow A T \mid U B$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$
$\mathrm{U} \rightarrow \mathrm{a}$
$\mathrm{T} \rightarrow \mathrm{SA}$

$$
\varepsilon=\{B, A\}
$$

Step 4'

- For each $B \in \varepsilon$ For each rule $A \rightarrow B C$ add the rule $A \rightarrow C$
- For each $C \in \varepsilon$ For each rule $A \rightarrow B C$ add the rule $A \rightarrow B$
- Remove all $A \rightarrow \varepsilon$ rules
- If $S_{0} \in \varepsilon$ then add $S_{0} \rightarrow \varepsilon$
$S_{0} \rightarrow S$
$S \rightarrow A T \mid U B$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$
$\mathrm{U} \rightarrow \mathrm{a}$
$\mathrm{T} \rightarrow \mathrm{SA}$

$$
\varepsilon=\{\mathrm{B}, \mathrm{~A}\}
$$

Step 4'

- For each $B \in \varepsilon$ For each rule $A \rightarrow B C$ add the rule $A \rightarrow C$
- For each $C \in \varepsilon$ For each rule $A \rightarrow B C$ add the rule $A \rightarrow B$
- Remove all $A \rightarrow \varepsilon$ rules
- If $\mathrm{S}_{0} \in \mathcal{\varepsilon}$ then add $S_{0} \rightarrow \varepsilon$
$S_{0} \rightarrow S$
$\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{UB}| \mathrm{T} \mid \mathrm{U}$
$A \rightarrow B \mid S$
$B \rightarrow b$
$U \rightarrow \mathrm{a}$
$\mathrm{T} \rightarrow \mathrm{SA} \mid \mathrm{S}$

$$
\varepsilon=\{B, A\}
$$

Step 5

- Call rules of form $A \rightarrow B$ unit rules
- Call all other rules interesting ones
- For each A compute the set $D(A)$ of all other variables reachable from A via unit rules
- Remove all unit rules and add all interesting rules on the RHS of vars in $D(A)$ to the RHS for A

$S_{0} \rightarrow S$
$S \rightarrow \underline{\text { AT }}|\underline{\mathrm{UB}}| \mathrm{T} \mid \mathrm{U}$
$A \rightarrow B \mid S$
$\mathrm{B} \rightarrow \underline{\mathrm{b}}$
$\cup \rightarrow \underline{\mathrm{a}}$
$\mathrm{T} \rightarrow \underline{\text { SA } \mid S}$

Step 5

- Call rules of form $A \rightarrow B$ unit rules
- Call all other rules interesting ones
- For each A compute the set $D(A)$ of all other variables reachable from A via unit rules
- Remove all unit rules and add all interesting rules on the RHS of vars in $D(A)$ to the RHS for A

$S_{0} \rightarrow S$
$S \rightarrow \underline{\text { AT }}|\underline{\mathrm{UB}}| \mathrm{T} \mid \mathrm{U}$
$A \rightarrow B \mid S$
$\mathrm{B} \rightarrow \underline{\mathrm{b}}$
$\cup \rightarrow \underline{\mathrm{a}}$
$\mathrm{T} \rightarrow \underline{\text { SA } \mid S}$
$D(B)=\{B\} \quad D(U)=\{U\}$
$D(T)=D(S)=\{S, T, U\}$
$D\left(S_{0}\right)=\left\{S_{0}, S, T, U\right\}$
$D(A)=\{A, B, S, T, U\}$

Step 5

- Call rules of form $A \rightarrow B$ unit rules
- Call all other rules interesting ones
- For each A compute the set $D(A)$ of all other variables reachable from A via unit rules
- Remove all unit rules and add all interesting rules on the RHS of vars in $D(A)$ to the RHS for A
$\mathrm{S}_{0} \rightarrow$
$S \rightarrow \underline{\text { AT }} \mid \underline{\mathrm{UB}}$
$\mathrm{A} \rightarrow$
$B \rightarrow \underline{b}$
$\cup \rightarrow \underline{\mathrm{a}}$
$\mathrm{T} \rightarrow \underline{\mathrm{SA}}$
$D(B)=\{B\} \quad D(U)=\{U\}$
$D(T)=D(S)=\{S, T, U\}$
$D\left(S_{0}\right)=\left\{S_{0}, S, T, U\right\}$
$D(A)=\{A, B, S, T, U\}$

Step 5

- Call rules of form $A \rightarrow B$ unit rules
- Call all other rules interesting ones
- For each A compute the set $D(A)$ of all other variables reachable from A via unit rules
- Remove all unit rules and add all interesting rules on the RHS of vars in $D(A)$ to the RHS for A

$\mathrm{S}_{0} \rightarrow$ AT | UB |a|SA
$S \rightarrow \underline{A T}|\underline{U B}| a \mid S A$
A \rightarrow AT \mid UB $|\mathbf{a}|$ SA $\mid \mathbf{b}$
$B \rightarrow \underline{b}$
$U \rightarrow \underline{a}$
$\mathrm{T} \rightarrow \mathbf{A T}|\mathrm{UB}| \mathbf{a} \mid \underline{\mathrm{SA}}$
$D(B)=\{B\} \quad D(U)=\{U\}$
$D(T)=D(S)=\{S, T, U\}$
$D\left(S_{0}\right)=\left\{S_{0}, S, T, U\right\}$
$D(A)=\{A, B, S, T, U\}$

