We know:

\[\text{L} \neq \text{NL} \neq \text{P} \neq \text{NP} \neq \text{PSPACE} \neq \text{EXP} \neq \text{NEXP} \]

Today we prove these separations:

The method we will prove is based on diagonalization, where we designed a new machine that did the opposite of the i-th machine \(M_i \) on input \(\langle M_i \rangle \).

We will do something along the same lines for listing all space-bounded (or time-bounded) TMs.

The construction is similar in the two cases but easier for space.

The general idea is that a bit more space will let \(M_1 \) do more, but that only works for "nice" space bounds.
Space Hierarchy Theorem

Def: A function \(f: \mathbb{N} \rightarrow \mathbb{N} \) is space constructible if

\[f(n) > \log(n) + \log \log(n) \text{ and} \]

the map \(1^n \rightarrow \) binary representation of \(\langle f(n), < f(n) \rangle \) is computable by an \(O(f(n)) \)-space TM.

The general idea of a list \(L \) is that for a space constructible \(f(n) \) and any \(\langle M \rangle \) we can simulate \(M \) on input \(x \) using space \(O(f(n)) \) s.t.

The simulation does what \(M \) does if

- \(M \) doesn't use more than \(f(1x) \) storage
- \(M \) doesn't run for more than \(2^f(1x) \) steps (which implies that \(M \) doesn't run forever)

"On input \(\langle M \rangle \) and \(x \):

- Use space constructibility of \(f \) to compute the binary string \(< f(1x) > \) on the work tape
 (pretend each symbol of \(x \) is a 1)
- Mark off \(f(1x) \) cells on a separate sector of the work tape
- Create a counter \(2^{f(1x)} \) using another \(f(1x) \) cells.
- Simulate \(M \) on input \(x \) keeping track of the \(n \) of steps
 - Subtract 1 from counter each step
 - Stop simulation if \(A \) moves off the marked cells & reject
 - Stop when counter reaches 0 & reject"

Using this idea we prove
Theorem: If \(f(n) \) is space constructible, then there is a language \(A \) decidable using space \(O(f(n)) \) but not \(o(f(n)) \).

Proof: Define \(A \) as the language decided by the following TM for a "diagonal language".

On input \(x \):
1. Use space constructibility of \(f \) to compute \(f(<M|x|>) \) on the work tape.
2. Mark off \(f(<M|>) \) cells on the work tape.
3. If \(x \) is not of the form \(<M|O_1^n> \), then reject.
4. Simulate \(M \) on input \(x \) and count steps.
 - If more than \(2f(<M|>) \) steps, \(M \) stops and accept.
 - If more than \(f(<M|>) \) cells are used and \(steps \leq f(<M|>) \), then accept.
5. If \(M \) accepts, then reject.
 - If \(M \) rejects, then accept.

Claim: \(A \) is different from every language decided using space \(o(f(n)) \).

Suppose not. Then \(A = L(M_i) \) for some \(M_i \) that uses space \(g(n) = o(f(n)) \).

Consider whether \(A \) includes \(<M_i> \):
- If \(M_i \) runs on input \(<M_i> \), using \(\leq f(<M_i|O_2^n>) \) cells and time at most \(2f(<M_i|O_2^n>) \), then we get a contradiction since we flipped the answer in defining \(A \).
However, even though \(g(n) = o(f(n)) \)
\(n = \langle M, i \rangle \) might be small enough that \(f(n) < g(n) \), in which case \(\text{P} \) wouldn't be a language.

To get around this, we flip an infinite number of values for each \(M_i \) and not just the diagonal.

We use
\[
* = \langle M_i, 0^k \rangle \text{ for all integer } k
\]
which will allow us to tell which
machine is associated.

Now, for any input \(* = \langle M_i, 0^k \rangle \) such that
\(k \) makes
\[
\langle M_i, 0^{2^k} \rangle \geq_g \langle M_i, 0^k \rangle
\]
is good enough,
and we get a contradiction.

If \(S(1) \) is \(o(S(1)) \) then
\[
\text{SPACE}(S(1)) \subsetneq \text{SPACE}(S(1))
\]

Note: most natural functions are space constructible
\(n^k, \log n, n \log n, \text{ etc.} \)

- \(\log n \):
 - On input \(\langle n \rangle \), count \# of bits
 - onto work tape: gets \(n \) in binary
 - which takes \(\log n \) bits.
 - Now count \# of bits in that: \(\log n \) in binary

\(\text{Con} = \text{NL} \subseteq \text{SPACE}(\log^2 n) \subsetneq \text{PSpace} \)
Time Hierarchy

Definition: A language is time constructible if \(f(n) \) is computable in time \(O(f(n)) \).

Theorem: If \(L \) is time constructible, there is a language decidable in time \(O(f(n)) \) but not \(O(f(n)^{log_2 n}) \).

Proof idea: Essentially the same as the one for bounded space except that on input \(x \), we use time constructibility to compute \(t(|x|) \) in binary and use it as a timer for the computation. Count down to 0 (subtract 1 per step) reject if it exceeds the time.

Unlike with space complexity, we have to count the number of steps to update the timer.
The timer takes \(\log(t(|x|)) \) bits to represent and update.

In the course, we used multi-tape TM for this. The book used 1-tape TM. The proof is different in the two cases.
Multi-type TM version: We need a fixed # of tapes for the machine defining \(A \) but the other TMs \(M_i \) might use more tapes.

We use simulation of \(k \)-tape TM by 2-tape TM.

Each step becomes \(O(t(n)/\log(t(n))) \) steps & it keeps track of a counter.

1-tape version: Maintain the counter like a pocket watch that is carried by the TM near the read head:

Think of it as on a separate branch of the tape.

Shift the timer letter right at each time step:

\(O(\log(t(n))) \) steps per original step.

If \(t(n) \) is \(O(t(n)/\log(t(n))) \) then both can be done in \(O(t(n)) \) step.

Can we use these diagonalization arguments to prove \(P \neq NP \)?
Idea why "NO": These diagonalization arguments work by "simulation".

We could get separated even if both machines could get access to the answer to some hard problem.

"Oracle TM1" M^B gets to ask question: "Is y in B" in 2 step language.

Simulation also works for oracle machine.

P^B = languages decidable in poly time using such an oracle TM.

NP^B = same except nondet oracle TM.

If diagonalization showed $P \neq NP$ it would also show $P^B \neq NP^B$ for every B.

But: $\exists B: P^B = NP^B$

Example $B = TQBF$.

$P_{TQBF} = \text{PSpace-Lelem} = NP_{\text{Space-Lelem}} = NP_{TQBF}$

Feit. Also $\exists A$, one can prove $PA \neq NP_A$ (complicated see 9.2 in text).
Q: Why wouldn't SAT work?

NP SAT can decide formulas of the form

\[\exists x_1 \ldots \exists x_n \forall y_1 \ldots \forall y_m \forall (x_1 \ldots x_n, y_1 \ldots y_m) \]

Here's how: NP machine guesses \(x_1, \ldots, x_n \), \(y_1, \ldots, y_m \).
Then call SAT oracle on

\[\exists \phi(x_1, \ldots, x_n, y_1, \ldots, y_m) \]

(if this is not SAT then

\[\forall y_1, \ldots, \forall y_m \forall (x_1, \ldots, x_n) \]

it true

so the whole formula would be true)

\[\therefore \exists_x = \text{NP} \text{SAT} \]

However \(\text{P} \text{NP} \subseteq \exists_x \cap \Pi_2^0 \)

we don't know if \(\exists_x = \Pi_2^0 \) (researcher question)

so it is possible that \(\exists_x \cap \Pi_2^0 \neq \exists_x \)

in which case \(\text{P} \text{SAT} \neq \text{NP} \text{SAT} \).