L = SPACE(log n) \quad NL = NSPACE(log n)

L \subseteq NL \subseteq P \subseteq NP

Def. \(f \) is logspace-computable \iff \(f \) is computable by a TM of the following form:

![Diagram of a Turing Machine](attachment:image.png)

Def. \(A \leq_L^m B \) \iff \(A \leq_m^L B \) via reduction, \(f \) that is logspace-computable

Def. \(B \) is \(\text{NL-hard} \) \iff \(\forall A \in \text{NL}, \ A \leq_L^m B \)

Def. \(B \) is \(\text{NL-complete} \) \iff (i) \(B \in \text{NL} \) (ii) \(B \) is NL-complete

Def. \(\text{PATH} \) is NL-complete

Proof. (1) \(\text{PATH} \in \text{NL} \) \iff \(\text{last min} \)

(2) Let \(A \in \text{NL} \), claim \(A \leq_L^m \text{PATH} \)

Reduction from last min:

\[A \quad \xrightarrow{f} \quad \langle G, x, \text{concept} \rangle \] where \(G \) is logspace NTH deciding \(A \)
Why is \(f \) logspace-computable?
- Each configuration vector of \(G_{n,x} \)
 takes \(O(\log n) \) space so \(O(\log n) \) easy

Producing \(G_{n,x} \):
 Adjacency list forms
 For all configurations \(C \)
 (in lexicographic order, not necessarily reachable)
 Output \(C \) followed by all
 next configurations \(D_i \)
 s.t. \(C \rightarrow M D_i \)
 (i.e. \(C \rightarrow \{ D \}) \)
 i.e. \(C : D_{i_1}, \ldots, D_{i_j} \)
 \(\text{in} \) \(\text{out-} \) neighbors
 only need to store a constant #
 of configurations.
 \(\therefore \) \(O(\log n) \) space

We still need to prove properties of \(\leq L \) that were easy
for \(\leq M \) and \(\leq W \) but are tricky for \(\leq L \).

Then:
- If \(A \leq M B \) and \(B \in L \) then \(A \in L \)
- If \(A \leq W B \) and \(B \in NL \) then \(A \in NL \)
- If \(A \leq M B \) and \(B \leq \leq C \) then \(A \leq \leq C \)

Proof
- Usual method

Instead:
Modify M_B: If M_B is looking at y_i, we have M_B also keep track of the input head position.

Change M_f by reversing its output tape. New machine for A will "call" M_f with index i. (r is still on input tape, i is on the control tape.) Each time it does it will run M_f ignoring its output except for the ith bit of output. M_f will need to keep track of the # of bits output so far, j.

Re-run M_f each time step of M_B to find out the value of y_i.

Total space: Space for M_f
Space for M_B $+ O(\log n)$

Note: $|f|_{1}^{1}$ is $\log |f|$ if $n = 1$

$|\log |f||_{1}^{1}$ is $O(\log n)$ so still $O(\log n)$ space total

Note: same construction works for NL case.

For $A \leq^L B$ and $B \leq^L C$ \implies $A \leq^L C$
do the same except M_B replaced by M_f
do some change as above $\frac{1}{f(n)} = \frac{1}{(4n^3)}$
Con. $\text{PATH} \leq_{m} C \Rightarrow C$ is NL-hard

The following is very surprising.

Then $\text{PATH} \notin \text{NL}$

$\text{PATH} \equiv \{ \langle G, s, t \rangle : G \text{ does not have a path from } s \text{ to } t \}$

Con. $\text{NL} = \text{coNL}$

- complements of languages in NL

Con. For any space bound $S(n) \geq \log_2 n$

$\text{NSPACE}(S(n))$ is closed under complement

Proof. Imagine that we have the value

$\text{Count} = \# \text{ of vertices of } G \text{ reachable from } s$

No Path (s, t, Count, i)

- Reach $\leq O$

For all vertices $v \in G$

Guess whether v is reachable from s

if Guess is yes then

Guess & verify a path of length $\leq \text{Count}$ from s to v, one vertex at a time

if path found Reach = $\text{Reach} + 1$

else reject

end for

if reach = count then accept else reject
How do we compute Count_i?

Idea: "inductive counting"

Define: $\text{Count}_i = \#$ of vertices reachable from s via paths of length $\leq i$

$\therefore \text{Count}_0 = 1 \quad \& \leq 3$

$\text{count} = \text{Count}_n$

This will be via a nondeterministic algorithm, such an alg with have some paths that reject but any branch that does not reject will compute the correct value.

We can't afford to store all the Count_i vars but we only need vars for the current layer i, count_i, count_{i+1}

$i\leq 0$, $\text{count}_{i} \leftarrow 1$

for $i = 0$ to $n-1$ do

$\text{count}_{i+1} \leftarrow 0$

for all vertices $v \in G$ do

if $v = s$ then

$\text{count}_{i+1} \leftarrow \text{count}_{i+1} + 1$

else

Guess whether v is reachable from s via a path of length $\leq i+1$

if guess for v is yet

Guess & verify a path of length $\leq i+1$

drawn from s to v, one vertex at a time

if found then $\text{count}_{i+1} \leftarrow \text{count}_{i+1} + 1$

else reject
If guess for v is no
 for all predecessors u of v in G
 "Check that no path of length e_i
 from s to u in G"
 if No Path$(s, t, \text{count}_{t}, i)$ is false
 then reject
 end for
 end for
Count $\leq \text{count} + 1$

Clearly only a constant # of counters and variables need to be stored. $\mathcal{O}(\log n)$ space.