So far

- \(\text{CONTIME}(f(n)) \subseteq \text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n)) \) for \(f(n) = \log^2 n \)

- \(\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f^2(n)) \) for \(f(n) > \log^2 n \)

In particular,

\[
P \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXP} \subseteq \text{NSPACE}
\]

Def\(^n \) B is **PSPACE-hard** iff \(\forall A \in \text{PSPACE}, A \leq^P_B \)

Def\(^n \) B is **PSPACE-complete** iff

- \(B \in \text{PSPACE} \)
- \(B \) is **PSPACE-hard**

Def\(^n \) \(\text{TQBF} = \exists \phi : \phi \) is a fully quantified Boolean formula that evaluates to true

- \(\exists x_1, \forall x_2, \exists x_3 ((x_1 \rightarrow x_2) \land (x_2 \rightarrow x_3) \land (x_3 \rightarrow x_2)) \)
- true, \(x_1 = 0, x_3 = x_2 \)

Thm \(\text{TQBF} \) is **PSPACE-complete**
Proof 1: \textbf{Claim: TAQBE \textit{PSPACE}}

Write \(\phi = Q_1 x_1 \cdots Q_n x_n \psi(x_1 \cdots x_n) \)

Imagine a full binary tree on the \(x_1, \ldots, x_n \) variables.

Consider an alg that does a DFS on this tree evaluating the formula:

The value of the leaf is easy polynomial to compute.

We can evaluate each node as we backtrack from the DFS.

If \(x_i \) is labelled by \(\exists \):
- evaluate left child
- if left child’s value is \(1 \) return \(1 \)
- else evaluate right child and return its value
If x_i is labeled by A:
- evaluate left-child
 - if left-child's value is 0 return 0
 - else evaluate right-child and return $1 + \text{value}$

What storage is required:
- DFS stack: height n
- Enough to evaluate G at a leaf
- Total $m + \langle G \rangle \leq \text{linear space}$

2) $\text{TQBF is PSPACE-hard}$:

Let $A \in \text{PSPACE}$

- A is decided by some TM M such
 - space $S \leq cn^k$ for some constant c, k

Recall: $x \in A \Leftrightarrow \exists \text{ path from } C_0 \text{ to } \text{accept in } G_{M,x}$

- Configurational Graph of M on input x
- $G_{M,x}$ has at most $T = 2S$ nodes
- each node of $G_{M,x}$ is a configuration of M on input x and can be described by $O(S)$ bits.

$O(c n^k)$.
Recall \(\text{CANYIELD}_t(C,D) \)

\[\text{then is a path from } C \text{ to } D \]

in \(G_{mix} \) of length \(\leq t \).

\(\text{CANYIELD}_0(C,D) \equiv \text{"C=D"} \)

\(\text{CANYIELD}_1(C,D) \equiv \text{"C=D"} \lor \text{"C\rightarrow D"} \)

\(\text{"yield in one step"} \)

\(\text{CANYIELD}_t(C,D) \equiv \exists \text{mid} . (\text{CANYIELD}^t_{t+1?}(C,\text{Even}) \land \text{CANYIELD}^t_{t+1?}(\text{mid},D)) \)

We prove \(\alpha \preceq^\alpha \top \alpha \beta \)

Goal: \(x \in A \rightarrow \langle \Phi_{mix} \rangle \)

where \(\Phi_{mix} \equiv 1 \) iff \(\text{CANYIELD}_+(C_0, C_{\text{accept}}) \)

We will define formula \(\Phi_t(\overline{C}, \overline{D}) \) s.t.

\(\Phi_t(\overline{C}, \overline{D}) \) iff \(\text{CANYIELD}_+(C_1, D) \)

where \(\overline{C}, \overline{D} \) are binary vectors of variable correspondingly to entry \(C, D \)

since space \(s \leq S \), \(\overline{C}, \overline{D} \) take \(O(S) = O(\log \alpha) \) bits.

We will set \(\Phi_{mix} = \Phi_t(\overline{C_0}, \overline{C_{\text{accept}}}) \)

(\text{constant bit-vector representation of all configurations})
\(\Phi_0 (\mathcal{C}, \bar{d}) \) is an \(\mathcal{L} \) of \(\mathcal{C}(S) \) consisting of the form \((\mathcal{C}_i)^{\bar{d}} \).

\(\Phi_1 (\mathcal{C}, \bar{d}) = \Phi_0 (\mathcal{C}, \bar{d}) \cup \text{" } C \text{"} \)

\(\Phi_t (\mathcal{C}, \bar{d}) \) can express in logic only \(\Phi_t \) functions (just like adjacent rows or in Cook-Levin tableau).

Assume we say that we only define \(\Phi_t \) when \(t \) is a power of 2.

\textbf{Obvious: attempt based on CANFIELD}_t \((\mathcal{C}, \bar{d}) \)

\(\Psi_t (\mathcal{C}, \bar{d}) : \exists \mathcal{C}_{\text{mid}} (\Phi_{t_1} (\mathcal{C}, \mathcal{C}_{\text{mid}}) \wedge \Phi_{t_2} (\mathcal{C}, \mathcal{C}_{\text{mid}})) \)

When we unravel this remark we realize that \(\Phi_t \)

\[\text{size} (\Phi_t) > 2 \times \text{size} (\Phi_{t_2}) \]

So \(\text{size} (\Phi_t) > t \), which will be bad for \(\Phi_t \) since \(T \) is exponential and we need to compute in polynomial.

But we haven't used any \(A \) in this !

Our new idea will be to write \(\Phi_{t_2} \) just once and use the \(A \) quantifier to cover the two cases.
Define \(\Phi_t(\mathcal{C}, \mathcal{D}) = \bigoplus_{\mathcal{C}_{\text{mid}}} \bigvee_{\mathcal{E}, \mathcal{F}} \left((\mathcal{C} = \mathcal{C}_{\text{mid}}) \land (\mathcal{E} = \mathcal{C}_{\text{mid}}) \right) \lor (\mathcal{E} = \mathcal{C}_{\text{mid}}) \land (\mathcal{F} = \mathcal{D}) \)

\(\to \Phi_{t/2}(\mathcal{E}, \mathcal{F}) \)

Now \(\text{size}(\Phi_t) = c n^k + \text{size}(\Phi_{t/2}) \)

\[\text{size}(\Phi_t) = (c n^k) \log T + c n^k \]

\[\overset{O(n^k)}{\text{O}(n^k)} \]

\[\text{size}(\Phi_t) = \text{O}(n^{2k}) \text{ which is polynomial} \]

\(\Phi_t \) is very easy to write down - everything but \(\Phi_t \) doesn't even depend on the details of \(M \)

\(\therefore \text{it is polynomial} \)

By continuum it satisfies correctness \(\Box \)

Next time: complexity curves inside \(P \). Is every problem in \(P \) solvable in small space?