Every 3-coloring corresponds to a truth assignment for \(\phi \):

1. If \(f(\phi) \) is 3-colorable, one outer vertex per clause must be an \(F \) so corresponding literal must be a \(T \).
2. This has one \(T \) literal per clause.

If \(\phi \) is \(SAT \), color literal under via the truth value. At least one outer node in each clause is opposite of \(T \) literal node color and each outer node with \(F \) role with \(O \) and then \(T \). The inner triangle with \(O \) opposite the \(F \) and \(T \) \(F \) opposite the other two.
HAMPATH = \{ \langle G \rangle : \text{directed graph } G \text{ has a path touching each node exactly once} \}

HAMCYCLE = \{ \langle G \rangle : \text{G has a cycle} \}

Therefore, HAMPATH, HAMCYCLE are NP-complete.

Let ENP be $\text{coNP} = \text{pa} \text{RPC}$. Check $\text{SAT} \leq^p \text{HAM PATH (CYCLE)}$

Proof idea:

For any path/cycle, the diamond is either traversed

- from L to R ($x_i = \text{true}$)
- from R to L ($x_i = \text{false}$)

Replace by

- x_i can visit node C_1
- x_{i+1} can visit node for R to L

Each of node C_i node

- x_i can return from
- x_{i+1} can come from

Each of node C_i node

- x_i can return from
- x_{i+1} can come from
UNAHMUCYCLE

- **Def**: \(\text{coNP} = \Sigma^P_3 \) is the analog of \(\text{coNP} \) with \(\text{NP} \).
- **coNP problems**: \(\text{UNSAT} = \{ \varphi \mid \varphi \text{ is an unsatisfiable Boolean formula} \} \)
- \(\text{TAUT} = \{ \varphi \mid \varphi \text{ is a propositional logic tautology} \} \)

Note: \(\varphi \) is a tautology \(\implies \neg \varphi \) is unsatisfiable.

- \(\Sigma \) complete \(\implies \forall A \in \text{NP}, A \leq^p_\text{coNP} \overline{B} \implies B \in \text{coNP} \)
- \(\overline{\text{TAUT}}, \text{UNSAT} \) an \(\text{coNP} \) complete

- \(\Delta \) complete

- \(\text{NP} \neq \text{coNP} \) open

- \(\text{NP} = \text{coNP} \) if every tautology \(\varphi \) has a proof of polytime in some proof system.

- \(\text{NP} \cap \text{coNP} \neq \emptyset \) open.
So far we know:

\[p \subseteq \text{NP} \subseteq \text{EXP} = \bigcup_{k} \text{TIME}(2^{O(n^k)}) \]

We find an important and natural class of problems in between here.

Space Complexity

We define this using 2-tape NTMs where the input is in read-only memory.

![Diagram of a 2-tape NFTM]

Defn. The space used by a 2-tape NTM \(M \)

\[S(M) = \max \{ \# \text{ of work tape cells that } M \text{ uses on any input } w \in \Sigma^* \text{ and any computation path} \} \]

Defn. \(\text{SPACE}(S(n)) = \{ A : A \text{ is decided by a TM with read-only input with space used } O(S(n)) \} \)

\[\text{NSPACE}(S(n)) = \{ A : A \text{ is decided by an NTM with space used } O(S(n)) \} \]
Note: A is regular $\iff A \in \text{SPACE}(1)$

Run: SAT $\in \text{SPACE}(n)$

Proof: On input a formula φ:

Run brute force algorithm that tries all possible truth assignments Y and evaluates φ on each one.

$|Y| \leq |\varphi| < 1$ (copy from step 2)

and reuse space for each assignment, total space only a constant factor more than $|\varphi|$.

$\text{PSPACE} = \bigcup_n \text{SPACE}(n^k)$

$\text{NPSPACE} = \bigcup_n \text{SPACE}(n^2)$

Thus, $\text{EQ_NFA} \in \text{NPSPACE}$

Proof: On input $\langle N_1, N_2 \rangle$ where

N_1, N_2 are NFA's with state set Q_1, Q_2 respectively.
$L(N_1) + L(N_2) \iff \exists$ string y s.t. set of states reachable in N_1 on input y contains a final state of N_1, but set of states reachable in N_2 on input y does not (or vice versa)

Claim If such a y exists, then one of length

$$\leq 2\log_2 1 + 1\log_2 1 \exists y$$

Proof of Claim: If y is longer than one of the sets of states reachable in the two machines, repeat.

Idea: Use nondeterminism to guess y.

But: y is too long to write down in only null symbols.

Idea: Unlike time-bounded NTMs, can't convert space-bounded NTMs to guess first form symbol-by-symbol. Instead guess y and write down the whole thing.
Algorithm

On input \(\langle N_1, N_2 \rangle \)
start at \(q_0, q_1 \) states of \(N_1, N_2 \)
For \(2^{10^3} \) steps
Given next symbol \(y \)
keep track of current set of states reached so far on \(y \) in both \(N_1, N_2 \)
if one of these sets but not the other contains an accepting state then accept

Storage
- \(\{ Q, 1, 1 \} \) bits for sets of states reached
- \(\{ Q, 1 \} + 10^3 \) bits for a timer

Time (a) \(\text{TIME}(T(n)) \leq \text{SPACE}(T(n)) \)
\(\text{NTIME}(T(n)) \leq \text{NSPACE}(T(n)) \)

(b) For \(s(n) \gg \log_2 n \),
\(\text{SPACE}(s(n)) \leq \text{TIME}(2^{O(s(n))}) \)

(c) For \(s(n) \gg \log_2 n \),
\(\text{NSPACE}(s(n)) \leq \text{TIME}(2^{O(s(n))}) \)

Proof (a) If \(M \) runs for \(T(n) \) steps it can only use \(T(n) \) memory cell

(1) just like solution for ALBA:
If \(M \) has space \(s(n) \) then for some \(d \)
if has only \(n \cdot 2^{d s(n)} \) configurations
Why \(n \cdot 2^d \cdot S(n) \) ?

Possible

read-only input head

states, work tape contents

and work type head.

Now for \(S(n) \geq \log_2 n \)

\[n \leq 2^{S(n)} \]

so total is \(2^{d \cdot S(n)} \)

Now just simulate the \(S(n) \) space-bounded machine for \(2^{d \cdot S(n)} \) steps if accepted run accept.

If not accepted yet then reject.

Actually simulate also still takes space \(O(S(n)) \)

- original space + counter.

(c) Issues with doing this for NTMs:

- each path has length \(2^{d \cdot S(n)} \)

- exponential many paths to try.

next time.