Lecture 13

CSE 431
Intro to Theory of Computation

After Turing

Restricted computing models

McCulloch & Pitts (1943)
Neural Nets (neurons to deep nets)
as models of brain

Kleene (1951)
Neural Nets

complicated

Chomsky (1956)
Backus-Naur

Chomsky Context-Free languages

also are Context-Sensitive languages

Rabin & Scott (1959)
Nondeterministic Finite Automata (NFA)
introduced nondeterministic machines

You really simplified Kleene’s Thm

Following this claim:

CFGs \equiv \text{Pushdown Automata (PDA)}

Nondeterministic automata with a stack
Note: Normally we think of only being able to see top symbol on the stack, but we can convert such a machine into one with that restriction.

Suppose \(u = u_1 \ldots u_k \), \(v = v_1 \ldots v_l \).

Thus, for every \(L \), there is a CFG \(G \) s.t. \(L = L(G) \) \(\Rightarrow \) there is a PDA \(M \) s.t. \(L = L(M) \).

We will only prove one direction (the other direction is much less practically important, and is tricky. Sipser's text has the best exposition of it I have seen).

Thus, for every CFG \(G \), there is a PDA \(M \) s.t. \(L(G) = L(M) \).
Proof: We give two proofs.

Top-down parser

Given CFG G

with rule $A \rightarrow \omega$

and start symbol S

\[\rightarrow \text{apply rule} \]

$3, A \rightarrow \omega$

$\rightarrow \text{match input} \]

$3, a \rightarrow \varepsilon$

accept state

Idea: M applies rule of derivation to variable at top of the stack, matching up terminal at top of stack to the input.

eq. $S \rightarrow (S) | \varepsilon$

$S \rightarrow (S) \rightarrow (C)$

Stack:

\[
\begin{align*}
\text{Input: } & () \quad \varepsilon \quad (\text{val: } () \cdots) \\
\text{Stack: } & S \quad S \quad \varepsilon \quad \varepsilon \\
\end{align*}
\]

corresponds to top-down DFS of

[Diagram of top-down DFS]
Note: This is a non-deterministic since a single A may have many rules.

Hard to know which rule to apply since the PDA hasn't even read any of the input symbols that the rule is supposed to generate.

Bottom-up Parser.

Idea: Push symbols onto the stack and try to invert the CFC derivation to produce S alone on the stack (other than $.)

- **Note:** If input has symbols a_1, a_2, a_3, we get $a_1 a_2 a_3$ and we start popping the first symbol one-by-one. We get $a_1 a_2 a_3$ on the stack (the last one is in top). This reverses the string.

Bottom-Up Parser

- Push input symbol
- Invert rule
In general, still nondeterministic and need look-ahead to know which rule to invoke.

Programming languages are designed so that one doesn't need to look ahead to know what rule to invoke.

Chomsky Normal Form Conversion

Rules of form:

- \(A \rightarrow BC \), \(B, C \in V, B, C \neq s \)
- \(A \rightarrow a \)
- \(S \rightarrow s \)

Problems for general rules:

1. \(A \rightarrow s \) for \(A \neq s \)
2. Right-hand side of length \(\geq 1 \) contains \(s \)
3. Right-hand sides of length \(\geq 2 \)
 - Rules of form \(A \rightarrow B \) (unit rules)
 - \(S \) on RHS of a rule

We get rid of these step by step:

\[
S \rightarrow (s) | s S 1 s e
\]
1. Add new S_0 and rule $S_0 \rightarrow S$
 New start symbol
 $S_0 \rightarrow S$, $S \rightarrow (S) | \epsilon | S_0$

2. Add new var U for each $a \in E$
 Replace a in any right hand side
 with U and add rule
 $U \rightarrow a$
 $S_0 \rightarrow S$, $S \rightarrow USUSSS\epsilon$, $U \rightarrow (, T,)$

3. Rules of length ≥ 2
 Add a chain of new intermediate
 variables to break up into size 2
 $S \rightarrow S$, $S \rightarrow UV|SS\epsilon$, $U \rightarrow (, T,)$

4. Compute E the set of variables that
 can produce ϵ:
 If $A \rightarrow \epsilon$ is a rule add $A \in E$
 Repeat: if $A \rightarrow BC$ is a rule with
 $B, C \in E$ add $A \in E$

$E = \{S_0, S, I\}$

Add $S \rightarrow S$

$V \rightarrow T$

(c) If $S_0 \in E$ add rule $S_0 \rightarrow \epsilon$
Any time such a rule is used it can be replaced by (a), (b), (c) rules above.

\[S \rightarrow Sl, S \rightarrow UV|SS|l, \quad U \rightarrow (, T \rightarrow), V \rightarrow ST/T \]

Note: we added a number of unit rules that might not have been there before.

(3) Get rid of unit rules:

Create a directed graph on variables where there is an edge

\[A \rightarrow B \iff A \rightarrow B \text{ unit rule} \]

Notes can do rules that walk around this graph doing replacements, but eventually need to do a non-unit rule at one of the unit reachable.

\[S \rightarrow Sl, S \rightarrow UV|SS|l, \quad U \rightarrow (, T \rightarrow), V \rightarrow ST/T \]

non-unit rules marked.

- Add all non-unit rules to any var that can reach this.
- Remove unit rules.
Graph: $s_0 \rightarrow s \rightarrow t \rightarrow u$

Final Grammar in Chomsky Normal Form:

- $s_0 \rightarrow uu|ss|\epsilon$
- $s \rightarrow uu|ss$
- $u \rightarrow (\rightarrow)$
- $v \rightarrow st|\epsilon$