So far: \(A \text{TM} \) undecidable, \(T\text{-rec} \)
\(A \text{TM} \) not \(T\text{-rec} \)
Other undecidable problems:
\(\text{HALT}_{\text{TM}} \)
\(E_{\text{TM}} \)
\(EQ_{\text{TM}} \)

Computable functions

Mapping reduction:

Definition:
\(A \leq_m B \) iff there is a computable function \(f: \Sigma^* \rightarrow \Sigma^* \)
\(\text{such that } y \in \Sigma^* \Rightarrow w \in A \iff f(w) \in B \)

Theorem:
Suppose that \(A \leq_m B \):
- If \(B \) is decidable, then \(A \) is decidable.
- If \(A \) is undecidable, then \(B \) is undecidable.
- If \(B \) is \(T\text{-rec} \), then \(A \) is \(T\text{-rec} \).
- If \(A \) is not \(T\text{-rec} \), then \(B \) is not \(T\text{-rec} \).

Correctness of Mapping Reduction

Then \(A \leq_m B \iff \overline{A} \leq_m \overline{B} \)

Figure:

See picture
Thus \(A \leq_m B \) and \(B \leq_m C \implies A \leq_m C \)

Proof

Let \(f \) be a reduction given by \(TM M_f \)

showing that \(w \in A \iff f(w) \in B \)

Let \(g \) be a reduction given by \(TM M_g \)

showing that \(w \in B \iff g(f(w)) \in C \)

let \(w \in A \). \(w \in A \iff f(w) \in B \iff g(f(w)) \in C \)

\(g \circ f \) is a reduction showing \(A \leq_m C \)

Thus Neither \(EQ^m \) nor \(\overline{EQ^m} \) is \(T\text{-}rec \)

Proof (a) \(EQ^m \) is not \(T\text{-}rec \):

Claim: \(A_{TM} \leq_m EQ^m \)

Want \(s \) s.t. \(< M, w > \xrightarrow{c} < M_1, M_2 > \) and \(< M, w > \in A_{TM} \iff L(M_1) = L(M_2) \)
i.e. M does not accept w $\iff L(M_w) = L(M_{\#})$

Idea: $\langle M, w \rangle \mapsto \langle M_w, M_{\#} \rangle$

Clearly, f is computable

Clearly, f is computable

where

- M_w is the TM that ignores its input and runs M on input w
- $M_{\#}$ is a simple TM that always rejects

Now

$L(M_w) = \begin{cases} \emptyset & \text{if } M \text{ accepts } w \\ \Sigma^* & \text{if } M \text{ does not accept } w \end{cases}$

$\text{Correctness: } L(M_{\#}) = L(M_w)$ $\iff M$ does not accept w.

(b) $\overline{EQ_{TM}}$ is not T-rec

Claim: $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$

i.e. $A_{TM} \leq_m EQ_{TM}$

Want f with

$\langle M, w \rangle \mapsto \langle M_1, M_2 \rangle$

$s + \text{M accepts } w$ $\iff L(M_1) = L(M_2)$

Similar idea: $\langle M, w \rangle \mapsto \langle M_w, M_{\#*} \rangle$

Clearly, f is computable

where $M_{\#*}$ is a TM with input alphabet $\Sigma \cup \{\#\}$ that always accepts.
\[L(M_{\text{rec}}) = \Sigma^* \]

and \[L(M_w) = \Sigma^* \Rightarrow L(M_{\text{rec}}) \]

if \(M \) accepts \(w \).

\[\text{Reduction is correct} \]

\[\text{EQTM} \]

A much broader class of properties that are undecidable.

\[P_{\text{TM}} = \{ <M> : M \text{ is a TM s.t. } L(M) \text{ has property } \mathcal{P} \} \]

Examples of properties \(\mathcal{P} \) = "empty" or "regular".

Rice's Theorem

Unless \(\mathcal{P} \) is "trivial"

\(P_{\text{TM}} \) is undecidable.

We prove this in a special case first.

\(\text{REGULAR}_{\text{TM}} = \{ <M> : L(M) \text{ is regular} \} \)
Thus REGULAR_TM is undecidable

Proof. We prove this by showing

Claim: $A_{TM} \leq_m \text{REGULAR}_{TM}$

We want $\langle M, w \rangle \overset{f}{\mapsto} \langle M' \rangle$

Goal: M accepts $w \iff L(M')$ is regular

More specific: M accepts $w \implies L(M') = \Sigma^*$

M doesn't accept $\implies L(M') = \{0^n1^n \mid n \geq 0\}$

Codebook of M':

On input x:
- if x is of form 0^n1^n for some n then accept
- otherwise, run M on input w & accept iff M does

Clearly f is computable

Correctness: If M accepts w then M' accepts every string M doesn't accept w run M' accept strings of the form 0^n1^n.

$\therefore L(M')$ is regular $\iff M$ accepts w
Rice's Theorem:

Definition

A property \(P \) is **non-trivial** iff there is some TM \(M_1 \) s.t. \(L(M_1) \) has property \(P \) and there is some TM \(M_0 \) s.t. \(L(M_0) \) does not have property \(P \).

Examples of trivial properties:
- \(L(M) \) is T-reducible (always has \(P \))
- \(L(M) \) is not T-reducible (never has \(P \))

Proof of Rice's Theorem

Case 1: \(\Sigma^* \) has property \(P \)

We use TM \(M_0 \) s.t. \(L(M_0) \) does not have property \(P \)

Claim

ATM \(\leq_m P_{TM} \)

Want s.t.

\(<M, w> \xrightarrow{f} <M_0>\)

\(M \) accepts \(w \) \iff \(L(M_0) \) has property \(P \)

Design goal: \(L(M_0) = \begin{cases} \Sigma^* & \text{if} \ M \text{ accepts } w \\ L(M_0) & \text{if} \ M \text{ does not accept } w \end{cases} \)

Want to use similar idea as for REGULAR_TM
Design of M_p (Attempt 1)

On input x
- Run M_o on input x
- If M_o accepts then accept
- Else run M on input w and accept if M does

Problem: M_o may not halt (unlike test for 0^n1^n)

We want x to be accepted if
- (M_o accepts x or M accepts w)

Actual Design for M_p:

On input x:
- Run M_o on input x
- Run M on input w in parallel one step at a time
- If either accepts then accept

If M accepts w then $L(M_p) = \Sigma^*$ has property P and if not, then $L(M_p) \neq L(M_o)$ hence

$.\ A_{TM} \leq_{P} P_{TM}$ so P_{TM} is undecidable.

Case 2: Σ^* does not have property P

We prove that $A_{TM} \leq_{m} P_{TM}$

$.\ P_{TM}$ is undecidable which means that P_{TM} is undecidable.
We use \overline{P}, the complement of property P
\[L(M) \text{ has property } P \]
\[L(M) \text{ does not have property } \overline{P}. \]
On the other hand, S^x has property P.

To show $A^m \leq_m \overline{P}^m$

we use M, in place of M_0 and the same proof idea to get $M_0^\overline{P}$.

\[\overline{P}^m \text{ is undecidable and so } P^m \text{ is undecidable as required.} \]

We give an alternative proof in the notes.