CSE 431: Introduction to Theory of Computation

Cocke-Kasami-Younger Algorithm

Paul Beame

Determining whether $w \in L(G)$

- Assume $G=(V, \Sigma, R, S)$ is in Chomsky Normal Form
- Grammar rules allowed
$-A \rightarrow B C$ where $B, C \in V \quad B, C \neq S$
- $A \rightarrow a \quad$ where $a \in \Sigma$
- $S \rightarrow \varepsilon$
- If $w=\varepsilon$ check whether $S \rightarrow \varepsilon$ is in R
- If $w=a \in \Sigma$ then check whether $S \rightarrow a$ is in R
- Otherwise, parse tree must be a binary tree and first rule is some $S \rightarrow B C$

Parse Tree for w with |w|=n

$w=x y$ so $x=w_{1} \ldots w_{k}$ and $y=w_{k+1} \ldots w_{n}$ for some k

Recursive Algorithm (Exponential Time)

Generates(A,w)

if $|w| \leq 1$ output true iff $A \rightarrow w$ is a rule in R
else
$\mathrm{n} \leftarrow|\mathrm{w}|$
for $\mathrm{k}=1$ to $\mathrm{n}-1$
$x \leftarrow w[1 . . k] ; y \leftarrow w[k+1 . . n]$
for each rule $A \rightarrow B C$ in R
if Generates(B, x) and Generates(C, y) output true
endfor
endfor
output false
endif

Dynamic Programming

- All the recursive calls are subproblems of the type Generates(A, x) where
- $A \in V$
- $x=w[i . . j]$
- Intervals in w get shorter the deeper the call
- CKY Algorithm: Create a table whose (i,j) ${ }^{\text {th }}$ entry is the list of all variables that can generate the string $w[i . . j]$
- Fill out table starting with short intervals first
- Answer is whether S is in table $(1, \mathrm{n})$ where $\mathrm{n}=|\mathrm{w}|$

CKY algorithm: O(n^{3}) time

- Base
for all $\mathrm{i}=1$ to n
table $(\mathrm{i}, \mathrm{i}) \leftarrow\left\{\right.$ variables A with rule $\left.\mathrm{A} \rightarrow \mathrm{w}_{\mathrm{i}}\right\}$
- Iteration for $\mathrm{d}=1$ to $\mathrm{n}-1$
- Entries table(i,j) with j-i<d already computed for every (i, j) with $\mathrm{j}=\mathrm{i}+\mathrm{d}$ do for $k=i$ to $j-1$
for every rule $A \rightarrow B C$ if $\mathrm{B} \in$ table(i, k) and $\mathrm{C} \in \operatorname{table}(\mathrm{k}+1, \mathrm{j})$

Add A to table(i,j)

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$, $\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$
Input aaabbb

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$, $\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$
Input aaabbb

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$, $\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$
Input aaabbb

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$, $\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$
Input aaabbb

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$, $\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$
Input aaabbb

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$, $\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$
Input aaabbb

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$, $\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$
Input aaabbb

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$,

$$
\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{~A} \rightarrow \mathrm{a}, \mathrm{~B} \rightarrow \mathrm{~b}
$$

Input aaabbb

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$, $\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$
Input aaabbb

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$,

$$
\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{~A} \rightarrow \mathrm{a}, \mathrm{~B} \rightarrow \mathrm{~b}
$$

Input aaabbb

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$, $\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$
Input aaabbb

Grammar $\mathrm{S} \rightarrow \mathrm{AT}|\mathrm{AU}| \varepsilon, \mathrm{T} \rightarrow \mathrm{UB} \mid \mathrm{b}$, $\mathrm{U} \rightarrow \mathrm{AT} \mid \mathrm{UT}, \mathrm{A} \rightarrow \mathrm{a}, \mathrm{B} \rightarrow \mathrm{b}$
Input aaabbb

