CSE 431 Fall 2019 Assignment #6

Due: Monday, November 18, 2019, 8:59 PM

Reading assignment: Read sections 9.3 and 7.5.

Problems:

- 1. Show that if P = NP then every language $A \in P$, except $A = \emptyset$ and $A = \Sigma^*$, is NP-complete.
- 2. Let $U = \{ \langle M, x, 1^t \rangle \mid M \text{ is an NTM that accepts input } x \text{ within } t \text{ steps} \}$. Show that U is NP-complete.
- 3. Let ϕ be a 3CNF-formula. An NAE assignment to the variables of ϕ is one that satisfies ϕ but does not set all three literals to true in any clause.
 - (a) Show that the negation of an NAE assignment for ϕ is also an NAE assignment for ϕ .
 - (b) Let NAESAT be the set of all 3CNF formulas φ that have an NAE assignment. Prove that NAESAT is NP-complete. For the hardness part use a reduction from 3SAT.
 (Hint: Use the function that replaces each clause C_i of φ of the form (y₁ ∨ y₂ ∨ y₃) where y₁, y₂, y₃ are literals by the two clauses (y₁ ∨ y₂ ∨ z_i) and (z_i ∨ y₃ ∨ w) where w is a single new variable for all clauses and there is one z_i variable per original clause.)
- 4. For any set of people V, an *influential subset* is a set S ⊆ V of people so that everyone in V is either in S, has a friend in S, or both. We can represent the friendship relationships between pairs of people by edges in an undirected graph G with vertices V so we carry over the definition of influential subset to subsets of vertices of such graphs. Let INFLUENTIAL-SUBSET = {⟨G, k⟩ | G has an influential subset S ⊆ V of size ≤ k}.

Show that INFLUENTIAL-SUBSET = {(G, k) | G has an initial subset $S \subseteq V$ of size $\leq k$ }. COVER.

(Hint: In the reduction from *VERTEX-COVER*, add vertices and edges to the original graph using precisely one extra vertex per original edge.)

- 5. Let $01ROOT = \{\langle p \rangle \mid p \text{ is a polynomial in } n \text{ variables with integer coefficients such that } p(x_1, \ldots, x_n) = 0 \text{ for some assignment } (x_1, \ldots, x_n) \in \{0, 1\}^n\}.$
 - (a) Show that $01ROOT \in NP$.
 - (b) Show that $3SAT \leq_m^P 01ROOT$. (HINT: First figure out how to convert each clause into a polynomial that evaluates to 0 iff the clause is satisfied. Then create a polynomial q that evaluates to 0 if and only if all of its inputs are 0. Finally, figure out how to combine the individual polynomials for the clauses using the polynomial q.

6. (Extra credit) Recall that a 2-CNF formula is a CNF formula in which each clause has 2 literals and that $2-SAT = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable 2-CNF formula}\}$. Show that $2SAT \in P$.