Reading assignment: Read Chapter 5 of Sipser’s text. We will cover section 5.3 before we cover computation histories in section 5.1.

Problems:

1. (20 points) Define $ALL_{DFA} = \{\langle M \rangle \mid M$ is a DFA with alphabet Σ and $L(M) = \Sigma^*\}$.
 Prove that ALL_{DFA} is decidable.

2. (20 points) Define $INFINITE_{CFG} = \{\langle G \rangle \mid$ the language that context-free grammar G generates is infinite$\}$.
 Prove that $INFINITE_{CFG}$ is decidable.

3. (20 points) A useless state in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a Turing machine has any useless states. Formulate this problem as a language and show that it is undecidable.

4. (20 points) Define $SUBSET_{TM} = \{\langle M_1, M_2 \rangle \mid M_1, M_2$ are TMs and $L(M_1) \subseteq L(M_2)\}$.
 Prove that $SUBSET_{TM}$ is undecidable.

5. (20 points) Suppose that $A \subseteq \{\langle M \rangle \mid M$ is a decider TM$\}$ and that A is Turing-recognizable.
 (That is, A only contains descriptions of TMs that are deciders but it might not contain all such descriptions.)
 Prove that there is a decidable language D such that $L(M) \neq D$ for every M with $\langle M \rangle \in A$.
 (Intuitively, this means that one couldn’t come up with some restricted easy-to-recognize format for deciders that captured all decidable languages.)
 (Hint: You may find it helpful to consider an enumerator for A.)

6. (Extra Credit) Let $\Gamma = \{0, 1, blank\}$ be the tape alphabet for all TMs in this problem. Define the $BB : \mathbb{N} \to \mathbb{N}$ as follows: For each value of k, consider all k-state TMs that halt when started with a blank tape. Let $BB(k)$ be the maximum number of 1s that remain on the tape among all of these machines. Show that BB is not a computable function.