
Rice’s Theorem about Undecidability

Language Properties: Fix some alphabet Σ. There are many possible languages A over alphabet Σ; that
is, many different possible A ⊆ Σ∗. Some of these languages are finite, some are regular, some of them
are context-free, some of them are decidable, etc. Each of “finite”,“regular”,“context-free”, “decidable”,
“Turing-recognizable” is an example of what we call a language property. A language propertyP is simply a
collection of some of the possible languages over Σ. In keeping with how we use “finite”,“regular”,“context-
free”, “decidable”, and “Turing-recognizable”, we will say that a language A has property P iff A is one of
the languages in the collection P .

So far, all of the examples of properties we have mentioned have an infinite number of different languages
in the associated collection. However, the collection P might be very small. For example the collection
P might be empty (no language satisfies this property) or have just a single language in it; for example, P
might be the “emptiness” property (only the empty language ∅ has this property).

Given any language property P , we can define its complement, P , to be the collection of all languages that
do not have property P .

For any language property P , we can define an associated language of Turing machine descriptions

PTM = {〈M〉 |M is a TM and L(M) has property P}.

We have seen a couple of languages of this sort that we have already proven to be undecidable:

REGULARTM = {〈M〉 |M is a TM and L(M) is regular} and

ETM = {〈M〉 |M is a TM and L(M) = ∅}.

The question that Rice’s Theorem answers is: for which properties P is PTM decidable?

There are two easy cases:

1. If no Turing-recognizable language has property P then, since L(M) is always a Turing-recognizable
language, L(M) never has property P , so PTM is empty and hence is decidable (always reject).

2. If every Turing-recognizable language has propertyP then, since L(M) is always a Turing-recognizable
language, the answer must always be that L(M) has property P , so PTM = {〈M〉 |M is a TM} and
this is decidable because all we need to check is that the input is a well-formed code of a TM.

If neither of these cases holds, then there is some TM M1 such that L(M1) has property P and some other
TM M0 such that L(M0) does not have property P; we say that the language property P is non-trivial if
both M0 and M1 exist.

Rice’s Theorem: PTM is undecidable for every non-trivial language property P .

Proof. We will actually need to split this into two different cases depending on the property P .

CASE 1: ∅ does not have property P .

In this case, to show that PTM is undecidable, we will prove that ATM ≤m PTM . The mapping reduction
f will use the TM M1 such that L(M1) has property P that we know exists because P is non-trivial.

1



The description of the function f is:
On input 〈M,w〉 produce 〈M ′w〉 where M ′w is the following TM:
“On input x, run M on input w; if M rejects w then reject. If M accepts w then run M1 on input x and
accepts iff M1 accepts.”

Clearly, f is a computable function. We just need to check that it has the right properties:

If M accepts w then M ′w accepts its input x iff x ∈ L(M1); that is, L(M ′w) = L(M1). Therefore L(M ′w)
has property P and so 〈M ′w〉 ∈ PTM .

If M does not accept w then M ′w will not accept any input x, so L(M ′w) = ∅. Since ∅ does not have
property P , this means that 〈M ′w〉 6∈ PTM .

Therefore we have 〈M,w〉 ∈ ATM ⇔ f(〈M,w〉) ∈ PTM and hence ATM ≤m PTM .

CASE 2: ∅ has property P .

In this case, we will prove undecidability by showing that ATM ≤m PTM (which also shows that PTM is
not even Turing-recognizable.)

The first observation in this case is that the complement property P satisfies Case 1. Therefore, as we have
shown, ATM ≤m PTM .

Since A ≤m B is equivalent to A ≤m B, this is essentially enough, except for a minor point: PTM 6= PTM ;
the reason is that strings in PTM are all codes of Turing machines, but PTM is the complement of PTM and
hence includes all strings that are not codes of Turing machines.

However, we can easily see that PTM ≤m PTM since we can simply have the reduction function f check
that its input string is a correctly formed code of a TM: If it is correctly formed, just pass it on as output;
otherwise, we are supposed to reject it so we map it to 〈M∅〉 where M∅ rejects all its inputs. Since L(M∅)
has property PTM , we know that 〈M∅〉 6∈ PTM .

Combining the reductions we get ATM ≤m PTM and hence ATM ≤m PTM as required.

Note: This is not the only way we could have split up the cases to produce the proof. The key thing we used
for Case 1 is that we had two languages, a smaller one (∅) that didn’t have the property and a larger one
L(M1) that did. We then used running M on input w and checking if it accepted to determine which of the
two languages was produced. An alternative Case 1 could have been: Σ∗ has property P . In that case we
would use M0 instead of M1 and the reduction would produce 〈M ′′w〉 where M ′′w does the following:
“On input x, in parallel run M0 on input x and run M on input w. If either accepts then accept.”
In this case, L(M ′′w) is either M0 or Σ∗ depending on whether or not M accepts w. If we know that M0 is
a decider then in M ′′w we could instead run M0 on input x before we run M on input w, but in general we
don’t know that. The example of the proof for the undecidability of REGULARTM given in Sipser’s text
is like this version of the argument in which M0 is known to be a decider. (For the alternative Case 2, we
would again use the complement of the property and reduce it to the alternative Case 1.)

Rice’s Theorem is kind of an analogue of the well-known saying “you can’t tell a book by its cover”. Instead
it says, in general, “You can’t tell what a TM/program does just by looking at its code”.

Rice’s Theorem is very general but it is important to be careful about what it does and does not say: It
only applies when the input is supposed to be the code of a TM and only says that one cannot decide
anything non-trivial about its input/output behavior (where the output behavior is just about which inputs
are accepted).

2


