CSE 431
Introduction to the Theory of Computation
Sample Final Exam
DIRECTIONS: Closed book, closed notes. Time limit 1 hour 50 minutes. Answer the problems on the exam paper.

1. Consider the following list of properties that might apply to the stated language.

T-rec: The language is Turing-recognizable.
Dec: The language is decidable.
$N P$ : The language is in $N P$.
$N P$-c: The language is $N P$-complete.
$\mathcal{P}$ : The language is in $\mathcal{P}$.
Circle all the properties that you are certain are true.
$\times$ out all the properties that you are certain are false.
Note: You may not be able to do either for some properties.

(b) $\{\langle M, w\rangle \mid$ Turing machine $M$ accepts $w$ in at most $|w|$ steps $\} \ldots \ldots$. . T-rec $\quad$ Dec $N P$-c $N P \quad \mathcal{P}$
(c) $\left\{\langle M, w\rangle \mid\right.$ Turing machine $M$ accepts $w$ in at most $2^{|w|}$ steps $\} \ldots \ldots$. . T-rec $\operatorname{Dec} N P$-c $N P \quad \mathcal{P}$


(f) $\{\langle F\rangle \mid F$ is a 3 -CNF formula which evaluates

(g) $\{\langle F, x\rangle \mid F$ is a 3-CNF formula which evaluates



2. Use the fact that $A_{T M}$ is undecidable to show that the following language is undecidable.

$$
L_{2}=\{\langle M\rangle \mid \text { Turing machine } M \text { accepts the input string " } 2 \text { " }\} .
$$

3. (a) Give a full formal definition of what it means for $A$ to be polynomial-time mapping reducible to $B$.
(b) Show that if $A \leq_{p} B$ and $B$ is in PSPACE, (i.e. $B$ can be decided by a TM using only a polynomial number of tape cells), then $A$ is also in PSPACE.
4. (a) What is $N P$-completeness and why is it an interesting/useful notion?
(b) Describe the error in the following incorrect "proof" that $P \neq N P$ :

Consider an algorithm for SAT:
"On input $\langle F\rangle$, try all possible assignments to the variables. Accept if any satisfy $F$ "
This algorithm clearly requires exponential time. Thus $S A T$ has exponential time complexity. Therefore $S A T$ is not in $P$. Because $S A T$ is in $N P$, it must be true that $P$ is not equal to $N P$.
5. The SET-PARTITION problem asks, given a collection of decimal numbers $x_{1}, \ldots, x_{n}$ whether or not it is possible to partition these numbers into two groups so that the sum in each group is the same. More formally, if $\langle\ldots\rangle$ means a decimal encoding,

$$
\text { SET-PARTITION }=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid \text { there is a set } S \subseteq\{1, \ldots, n\} \text { so that } \sum_{i \in S} x_{i}=\sum_{i \notin S} x_{i}\right\}
$$

Prove that SET-PARTITION is NP-complete.
Hint: Use the NP-completeness of

$$
\text { SUBSET-SUM }=\left\{\left\langle x_{1}, \ldots, x_{m}, t\right\rangle \mid \text { there is a set } S \subseteq\{1, \ldots, m\} \text { so that } \sum_{i \in S} x_{i}=t\right\}
$$

Hint: Try including two large numbers whose size differs by exactly $\sum_{i=1}^{m} x_{i}-2 t$.
6. The Travelling Salesperson Problem, TSP, asks, given an $n \times n$ matrix $C$ containing for each pair $i, j \in\{1, \ldots, n\}$, the integer cost $c_{i j}$ for travelling from city $i$ to city $j$, representing, say, the cost of gasoline to drive directly from city $i$ to city $j$, as well as an integer $K$, representing a total fuel budget, whether or not there is an order (for a travelling salesperson) to visit each of the $n$ cities exactly once, starting and ending in the same city, so that the total cost of the gasoline used is at most $K$ ? In set notation,

$$
T S P=\{\langle C, K\rangle \mid \text { with cost matrix } C \text { there is a salesperson's tour of total cost } \leq K\} .
$$

Use the fact that the directed Hamiltonian cycle problem, $D H A M C Y C L E$, is $N P$-complete to prove that $T S P$ is $N P$-complete.
Hint: choose the cost $c_{i j}$ to depend on whether or not the edge $(i, j)$ is in the graph $G$.
7. Prove that the language
$L=\left\{\langle M, a, b\rangle \mid\right.$ there is some $x \in\{0,1\}^{*}$ such that $M$ runs for $>a \cdot|x|^{2}+b$ steps on input $\left.x\right\}$ is Turing-recognizable.

