NFAs, Regular Expressions, and Equivalence with DFAs

Nondeterministic Finite Automaton (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol - can have 0 or >1
- Also can have edges labeled by empty string $\boldsymbol{\varepsilon}$
- Definition: The language recognized by an NFA is the set of strings x that label some path from its start state to one of its final states

Autumn 2011 CSE 311

DFAs

Lemma: The language recognized by a DFA is the set of strings x that label some path from its start state to one of its final states

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-bystep at the same time in parallel

Autumn 2011
CSE 311

NFAs and Regular Expressions

Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Note: One can also find a regular expression to describe the language recognized by any NFA but we won't prove that fact

Autumn 2011
CSE 311

Autumn 2011
CSE 311

Regular expressions over Σ

- Basis:
$-\varnothing, \varepsilon$ are regular expressions
$-\boldsymbol{a}$ is a regular expression for any $a \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions then so are:
- $(A \cup B)$
- (AB)
- A*

Basis

- Case \varnothing :
- Case $\boldsymbol{\varepsilon}$:
- Case \boldsymbol{a} :

Inductive Hypothesis

- Suppose that for some regular expressions \mathbf{A} and \boldsymbol{B} there exist NFAs N_{A} and N_{B} such that N_{A} recognizes the language given by A and N_{B} recognizes the language given by B

Autumn 2011

- Case \boldsymbol{a} :

Autumn 2011

Inductive Step

- Case (AB):

Autumn 2011
CSE 311

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Conversion of NFAs to a DFAs

- New start state for DFA
- The set of all states reachable from the start state of the NFA using only edges labeled $\boldsymbol{\lambda}$

Autumn 2011 CSE 311

Conversion of NFAs to a DFAs

- Final states for the DFA
- All states whose set contain some final state of the NFA

\qquad

Example: NFA to DFA

DFA

Exponential blow-up in simulating nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
- Power set of the set of states of the NFA
- n-state NFA yields DFA with at most 2^{n} states
- An example where roughly 2^{n} is necessary
- Is the $(n-1)^{\text {st }}$ char from the end a 1 ?
- The famous " $\mathrm{P}=\mathrm{NP}$?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms

