CSE 431:

More NP-completeness

Paul Beame

A useful property of polynomial-time reductions

- Theorem: If $\mathbf{A} \leq_{p} \mathbf{B}$ and $\mathbf{B} \leq_{p} \mathbf{C}$ then A $\leq_{p} C$
- Proof idea:
- Compose the reduction from A to B with the reduction \mathbf{g} from \mathbf{B} to \mathbf{C} to get a new reduction $\mathbf{h}(\mathbf{x})=\mathbf{g}(\mathbf{f}(\mathbf{x})$) from A to C .
- The running time bound for h is the running time bound for f plus the running time bound for g composed with that of f
- The composition of two polynomials is also a polynomial so if f and g are polynomial-time computable then so is h
- 3 SAT \leq_{p} CNFSAT
- CNFSAT \leq_{p} CLIQUE
- CIRCUIT-SAT is NP-complete
- We now show Cook-Levin Theorem that 3SAT is NP-complete (on board)
- Theorem (Cook 1971, Levin 1973):

3-SAT is NP-complete

- Corollary: \mathbf{B} is NP-hard $\Leftrightarrow 3$-SAT $\leq_{\mathrm{p}} \mathbf{B}$
- (or $\mathbf{A} \leq_{\mathrm{p}} \mathrm{B}$ for any NP-complete problem \mathbf{A})
- Proof:
- If B is NP-hard then every problem in NP polynomial-time reduces to B , in particular 3-SAT does since it is in NP
- For any problem \mathbf{A} in NP, $\mathbf{A} \leq_{p} 3-S A T$ and so if $3-S A T \leq_{p} B$ we have $A \leq_{p} B$.
- therefore B is NP-hard if 3-SAT $\leq_{p} B$

Reductions by Simple Equivalence

- Show: Clique \leq_{p} Independent-Set
- Clique:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that every pair of vertices in \mathbf{U} is joined by an edge?
- Independent-Set:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that no two vertices in U are joined by an edge?

More Reductions

- Show: Independent Set \leq_{p} Vertex-Cover
- Vertex-Cover:
- Given an undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k} is there a subset W of V of size at most k such that every edge of \mathbf{G} has at least one endpoint in W ? (i.e. W covers all edges of G)?
- Independent-Set:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that no two vertices in U are joined by an edge?
- Given (G,k) as input to Independent-Set where $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Transform to $\left(\mathbf{G}^{\prime}, \mathbf{k}\right)$ where $\mathbf{G}^{\prime}=\left(\mathbf{V}, \mathbf{E}^{\prime}\right)$ has the same vertices as G but $\mathbf{E '}^{\prime}$ consists of precisely those edges that are not edges of \mathbf{G}
- \mathbf{U} is an independent set in \mathbf{G}
$\Leftrightarrow \mathbf{U}$ is a clique in \mathbf{G}^{\prime}

Clique \leq_{p} Independent-Set

Reduction Idea

- Claim: In a graph $\mathbf{G}=(\mathbf{V}, \mathrm{E}), \mathbf{S}$ is an independent set iff V-S is a vertex cover
- Proof:
- \Rightarrow Let S be an independent set in G
- Then \mathbf{S} contains at most one endpoint of each edge of G
- At least one endpoint must be in V-S
- V-S is a vertex cover
- \Leftarrow Let $\mathrm{W}=\mathrm{V}$-S be a vertex cover of G
- Then S does not contain both endpoints of any edge (else W would miss that edge)
- S is an independent set

Reduction
Reductions from a Special Case to a General Case

- Map (\mathbf{G}, \mathbf{k}) to ($\mathbf{G}, \mathbf{n}-\mathbf{k}$)
- Previous lemma proves correctness
- Clearly polynomial time
- We also get that
- Vertex-Cover \leq_{p} Independent Set

The Simple Reduction

- Transformation f maps
($\mathbf{G}=(\mathbf{V}, \mathbf{E}), \mathbf{k})$ to ($\left.\mathbf{U}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{\mathbf{m}}, \mathbf{k}^{\mathbf{\prime}}\right)$
- U $\leftarrow E$
- For each vertex $\mathbf{v} \in \mathbf{V}$ create a set $\mathbf{S}_{\mathbf{v}}$ containing all edges that touch \mathbf{v}
- $k^{\prime} \leftarrow k$
- Reduction f is clearly polynomial-time to compute
- We need to prove that the resulting algorithm gives the right answer!
- Show: Vertex-Cover \leq_{p} Set-Cover
- Vertex-Cover:
- Given an undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k} is there a subset W of V of size at most \mathbf{k} such that every edge of G has at least one endpoint in W? (i.e. W covers all edges of G)?
- Set-Cover:
- Given a set \mathbf{U} of \mathbf{n} elements, a collection $\mathbf{S}_{1}, \ldots, \mathbf{S}_{m}$ of subsets of \mathbf{U}, and an integer \mathbf{k}, does there exist a collection of at most k sets whose union is equal to U ?

Proof of Correctness

- Two directions:
- If the answer to Vertex-Cover on (\mathbf{G}, \mathbf{k}) is YES then the answer for Set-Cover on $f(\mathbf{G}, \mathbf{k})$ is YES
- If a set \mathbf{W} of \mathbf{k} vertices covers all edges then the collection $\left\{\mathbf{S}_{\mathbf{v}} \mid \mathbf{v} \in \mathbf{W}\right\}$ of \mathbf{k} sets covers all of U
- If the answer to Set-Cover on $\mathbf{f}(\mathbf{G}, \mathbf{k})$ is YES then the answer for Vertex-Cover on (\mathbf{G}, \mathbf{k}) is YES
- If a subcollection $\mathrm{S}_{\mathrm{v}_{1}}, \ldots, \mathrm{~S}_{\mathrm{v}_{\mathrm{k}}}$ covers all of U then the set $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$ is a vertex cover in G .

Problems we already know are NPcomplete

- Circuit-SAT
- 3-SAT
- Independent-Set
- Clique
- Vertex-Cover
- Set-Cover

3-SAT \leq_{p} Subset-Sum

- Given a 3-CNF formula with m clauses and n variables
- Will create $2 m+2 n$ numbers that are $m+n$ digits long
- Two numbers for each variable \mathbf{x}_{i}
- t_{i} and f_{i} (corresponding to x_{i} being true or x_{i} being false)
- Two extra numbers for each clause
- u_{j} and v_{j} (filler variables to handle number of false literals in clause \mathbf{C}_{j})

More NP-completeness

- Subset-Sum problem
- Given \mathbf{n} integers $\mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathrm{n}}$ and integer t - Is there a subset of the n input integers that adds up to exactly t?

Graph Colorability

- Defn: Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, and an integer k , a k -coloring of G is
- an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.
- 3-Color: Given a graph $G=(V, E)$, does G have a 3 -coloring?
- Claim: 3-Color is NP-complete
- Proof: 3-Color is in NP:
- Hint is an assignment of red,green,blue to the vertices of G
- Easy to check that each edge is colored correctly

3-SAT \leq p 3 -Color

- Reduction:
- We want to map a 3-CNF formula F to a graph G so that
- \mathbf{G} is 3 -colorable iff F is satisfiable

Base Triangle

Clause Part:
Add one 6 vertex gadget per clause connecting its 'outer vertices' to the literals in the clause

Any truth assignment satisfying the formula can be extended to a 3-coloring of the graph

Any 3-coloring of the graph has an F opposite the O color in the triangle of each gadget

Any 3-coloring of the graph has T at the other end of the blue edge connected to the F

Any 3-coloring of the graph yields a satisfying assignment to the formula

Matching Problems

- Perfect Bipartite Matching

- Given a bipartite graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ where $\mathbf{V}=\mathbf{X} \cup \mathbf{Y}$ and $\mathbf{E} \subseteq \mathbf{X} \times \mathbf{Y}$, is there a set \mathbf{M} in E such that every vertex in \mathbf{V} is in precisely one edge of M ?
- In P
- Network Flow gives O(nm) algorithm where $\mathbf{n}=|\mathbf{V}|, \mathbf{m}=|\mathbf{E}|$.

3-Dimensional Matching

- Perfect Bipartite Matching is in \mathbf{P}
- Given a bipartite graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ where $\mathbf{V}=\mathbf{X} \cup \mathbf{Y}$ and $\mathbf{E} \subseteq \mathbf{X} \times \mathbf{Y}$, is there a subset \mathbf{M} in \mathbf{E} such that every vertex in \mathbf{V} is in precisely one edge of \mathbf{M} ?

- 3-Dimensional Matching

- Given a tripartite hypergraph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ where $\mathbf{V}=\mathbf{X} \cup \mathbf{Y} \cup \mathbf{Z}$ and $\mathbf{E} \subseteq \mathbf{X} \times \mathbf{Y} \times \mathbf{Z}$, is there a subset \mathbf{M} in \mathbf{E} such that every vertex in \mathbf{V} is in precisely one hyperedge of M ?
- is in NP: Certificate is the set M

| 3-Dimensional Matching

- Theorem: 3-Dimensional Matching is NP-complete
- Proof:
- We've already seen that it is in NP
- 3-Dimensional Matching is NP-hard:
- Reduction from 3-SAT
- Given a 3-CNF formula F we create a tripartite hypergraph ("hyperedges" are triangles) \mathbf{G} based on F as follows

- Clause part: Two new nodes per clause joined to

3-SAT \leq_{p} 3-Dimensional Matching

- Variable part:
- If variable x_{i} occurs r_{i} times in F create r_{i} red and r_{i} green triangles linked in a circle, one pair per occurrence
- Perfect matching \mathbf{M} must either use all the green edges leaving red tips uncovered (\mathbf{x}_{i} is assigned false) or all the red edges leaving all green tips uncovered ($\mathbf{x}_{\mathbf{i}}$ is assigned true)

3-SAT \leq_{p} 3-Dimensional Matching

- Slack: If there are m clauses then there are 3 m variable occurrences. That means 3 m total tips are not covered by whichever of red or green triangles not chosen. Of these, m are covered if each clause is satisfied. Need to cover the remaining 2 m tips.

Solution: Add 2 m pairs of slack vertices

3-SAT \leq_{p} 3-Dimensional Matching

- Well-formed: Each triangle has one of each type of node:
,
- Correctness:
- If F has a satisfying assignment then choose the following triangles which form a perfect 3-dimensional matching in G :
- Either the red or the green triangles in the cycle for $\mathbf{x}_{\mathbf{i}}$ - the opposite of the assignment to $\mathbf{x}_{\mathbf{i}}$
- The triangle containing the first true literal for each clause and the two clause nodes
- 2 m slack triangles one per new pair of nodes to cover all the remaining tips

3-SAT \leq_{P} 3-Dimensional Matching

- Correctness continued:
- If G has a perfect 3 -dimensional matching then:
- Each blue node in the cycle for each \mathbf{x}_{i} is contained in exactly two triangles, exactly one of which much be in M. If one triangle in the cycle is in \mathbf{M}, the others must be the same color. We use the color not used to define the truth assignment to \mathbf{x}_{i}
- The two nodes for any clause must be contained in an edge which must also contain a third node that corresponds to a literal made true by the truth assignment. Therefore the truth assignment satisfies F so it is satisfiable.

