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CSE 431: 

More NP-completeness

Paul Beame

We already know

� 3SAT ≤P CNFSAT

� CNFSAT ≤P CLIQUE

� CIRCUIT-SAT is NP-complete

� We now show Cook-Levin Theorem that 
3SAT is NP-complete (on board)
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A useful property of polynomial-time 
reductions

� Theorem: If  A ≤PB and B ≤P C then        
A ≤PC  

� Proof idea:
� Compose the reduction f from A to B with the reduction 

g from B to C to get a new reduction  h(x)=g(f(x)) from 
A to C.

� The running time bound for h is the running time bound 
for f plus the running time bound for g composed with 
that of f

� The composition of two polynomials is also a 
polynomial so if f and g are polynomial-time 
computable then so is h
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Cook-Levin Theorem Implications

� Theorem (Cook 1971, Levin 1973):
3-SAT is NP-complete

� Corollary: B is NP-hard ⇔ 3-SAT ≤PB
� (or A ≤PB for any NP-complete problem A)

� Proof:
� If B is NP-hard then every problem in NP

polynomial-time reduces to B, in particular 3-SAT
does since it is in NP

� For any problem A in NP, A ≤P3-SAT and so if
3-SAT ≤PB we have A ≤P B.

� therefore B is NP-hard if 3-SAT ≤PB
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Reductions by Simple Equivalence

� Show: Clique ≤P Independent-Set

� Clique:
� Given a graph G=(V,E) and an integer k, is 

there a subset U of V with |U| ≥ k such that 
every pair of vertices in U is joined by an 
edge?

� Independent-Set:
� Given a graph G=(V,E) and an integer k, is 

there a subset U of V with |U| ≥ k such that 
no two vertices in U are joined by an edge?
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Clique ≤P Independent-Set

� Given (G,k) as input to Independent-Set
where G=(V,E)

� Transform to (G’,k) where G’=(V,E’)
has the same vertices as G but E’
consists of precisely those edges that 
are not edges of G

� U is an independent set in G

⇔ U is a clique in G’
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More Reductions

� Show: Independent Set ≤P Vertex-Cover

� Vertex-Cover:
� Given an undirected graph G=(V,E) and an integer 

k is there a subset W of V of size at most k such 
that every edge of G has at least one endpoint in 
W?  (i.e. W covers all edges of G)?

� Independent-Set:
� Given a graph G=(V,E) and an integer k, is there a 

subset U of V with |U| ≥ k such that no two
vertices in U are joined by an edge?
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Reduction Idea

� Claim: In a graph G=(V,E), S is an 
independent set iff V-S is a vertex cover

� Proof:
� ⇒ Let S be an independent set in G

� Then S contains at most one endpoint of each 
edge of G

� At least one endpoint must be in V-S

� V-S is a vertex cover

� ⇐Let W=V-S be a vertex cover of G

� Then S does not contain both endpoints of any 
edge (else W would miss that edge)

� S is an independent set
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Reduction

� Map  (G,k) to (G,n-k)

� Previous lemma proves correctness

� Clearly polynomial time

� We also get that

� Vertex-Cover ≤P Independent Set
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Reductions from a Special Case to a 
General Case

� Show: Vertex-Cover ≤P Set-Cover

� Vertex-Cover:
� Given an undirected graph G=(V,E) and an integer 

k is there a subset W of V of size at most k such 
that every edge of G has at least one endpoint in 
W?  (i.e. W covers all edges of G)?

� Set-Cover:
� Given a set U of n elements, a collection S1,…,Sm

of subsets of U, and an integer k, does there exist 
a collection of at most k sets whose union is equal 
to U?
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The Simple Reduction

� Transformation f maps             
(G=(V,E),k) to (U,S1,…,Sm,k’)
� U←E

� For each vertex v∈V create a set Sv

containing all edges that touch v

� k’←k

� Reduction f is clearly polynomial-time to 
compute

� We need to prove that the resulting 
algorithm gives the right answer!

12

Proof of Correctness

� Two directions:  

� If the answer to Vertex-Cover on (G,k) is YES then 

the answer for Set-Cover on f(G,k) is YES

� If a set W of k vertices covers all edges then 

the collection {Sv | v∈ W} of k sets covers all of 

U

� If the answer to Set-Cover on f(G,k) is YES then 

the answer for Vertex-Cover on (G,k) is YES

� If a subcollection Sv1
,…,Svk

covers all of U then 

the set {v1,…,vk} is a vertex cover in G.
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Problems we already know are NP-
complete

� Circuit-SAT

� 3-SAT

� Independent-Set

� Clique

� Vertex-Cover

� Set-Cover
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More NP-completeness

� Subset-Sum problem

� Given n integers w1,…,wn and integer t

� Is there a subset of the n input integers 

that adds up to exactly t?
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3-SAT ≤PSubset-Sum

� Given a 3-CNF formula with m clauses 
and n variables

� Will create 2m+2n numbers that are 
m+n digits long
� Two numbers for each variable xi

� ti and fi (corresponding to xi being true 
or xi being false)

� Two extra numbers for each clause

� uj and vj (filler variables to handle 
number of false literals in clause Cj)
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3-SAT ≤PSubset-Sum

1 2 3 4 …  n  1 2 3 4 … m

i                   j

1 0 0 0 …  0  0 0 1 0 … 1

1 0 0 0 …  0  1 0 0 1 … 0

0 1 0 0 …  0  0 1 0 0 … 1

0 0 0 0 …  0  1 0 0 0 … 0

0 1 0 0 …  0  0 0 1 1 … 0

t1

f2

t2

f1

C3=(x1∨¬ x2∨ x5)

…          ….

u1=v1

0 0 0 0 …  0  0 1 0 0 … 0u2=v2

…          ….

1 1 1 1 …  1  3 3 3 3 … 3t
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Graph Colorability

� Defn: Given a graph G=(V,E), and an integer k, 
a k-coloring of G is
� an assignment of up to k different colors to the 

vertices of G so that the endpoints of each edge have 
different colors.

� 3-Color: Given a graph G=(V,E), does G have a 
3-coloring?

� Claim: 3-Color is NP-complete

� Proof: 3-Color is in NP:
� Hint is an assignment of red,green,blue to the 

vertices of G

� Easy to check that each edge is colored correctly
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3-SAT ≤P3-Color

� Reduction:

� We want to map a 3-CNF formula F to a 

graph G so that

� G is 3-colorable iff F is satisfiable
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3-SAT ≤P3-Color

O

TF

Base Triangle
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3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

Variable Part: 

in 3-coloring, variable

colors correspond to

some truth assignment 

(same color as T or F)
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3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

Clause Part:  
Add one 6 vertex gadget per clause  connecting 

its ‘outer vertices’ to the literals in the clause 22

3-SAT ≤P3-Color

Any truth assignment satisfying the formula 

can be extended to a 3-coloring of the graph

F

O

O

T
F

O

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn
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3-SAT ≤P3-Color

Any 3-coloring of the graph colors

each gadget triangle using each color

O

F

T

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn
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3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

Any 3-coloring of the graph has an F opposite

the O color in the triangle of each gadget

O

F

T

F
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3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

Any 3-coloring of the graph has T at the

other end of the blue edge connected to the F

O

F

T

F

T
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3-SAT ≤P3-Color

O

TF

x1

¬x1

¬x2

¬xn

...
x2

xn

Any 3-coloring of the graph yields a 

satisfying assignment to the formula

O

F

T

F

T
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Matching Problems

� Perfect Bipartite Matching

� Given a bipartite graph G=(V,E) where 

V=X∪Y and E ⊆ X × Y, is there a set M in 

E such that every vertex in V is in precisely 

one edge of M ?

� In P

� Network Flow gives O(nm) algorithm 

where n=|V|, m=|E|.

28

3-Dimensional Matching

� Perfect Bipartite Matching is in P

� Given a bipartite graph G=(V,E) where V=X∪Y
and E ⊆ X × Y, is there a subset M in E such that 

every vertex in V is in precisely one edge of M ?

� 3-Dimensional Matching 

� Given a tripartite hypergraph G=(V,E) where 

V=X∪Y∪Z and E ⊆ X × Y× Z, is there a subset M
in E such that every vertex in V is in precisely one 

hyperedge of M ?

� is in NP: Certificate is the set M
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3-Dimensional Matching

� Theorem: 3-Dimensional Matching is 
NP-complete

� Proof:

� We’ve already seen that it is in NP

� 3-Dimensional Matching is NP-hard:

� Reduction from 3-SAT

� Given a 3-CNF formula F we create a 

tripartite hypergraph (“hyperedges” are 

triangles) G based on F as follows
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3-SAT ≤P 3-Dimensional Matching

� Variable part:

� If variable xi occurs ri times in F create ri red and ri green
triangles linked in a circle, one pair per occurrence

� Perfect matching M must either use all the green edges 
leaving red tips uncovered (xi is assigned false) or all the 
red edges leaving all green tips uncovered (xi is 
assigned true)
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3-SAT ≤P 3-Dimensional Matching

� Clause part: Two new nodes per clause joined to 

each of its literals:

x1 x2 x5

C3=(x1∨¬ x2∨ x5)
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3-SAT ≤P 3-Dimensional Matching

� Slack: If there are m clauses then there are 3m variable 

occurrences.   That means 3m total tips are not covered by 
whichever of red or green triangles not chosen.  Of these, m are 
covered if each clause is satisfied.    Need to cover the 
remaining 2m tips.

Solution: Add 2m pairs of slack vertices
Add triangles joining each pair with every tip!
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3-SAT ≤P 3-Dimensional Matching

� Well-formed: Each triangle has one of each 
type of node: 

� Correctness:
� If F has a satisfying assignment then choose the 

following triangles which form a perfect                 
3-dimensional matching in G: 

� Either the red or the green triangles in the cycle 
for xi - the opposite of the assignment to xi

� The triangle containing the first true literal for 
each clause and the two clause nodes

� 2m slack triangles one per new pair of nodes to 
cover all the remaining tips
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3-SAT ≤P 3-Dimensional Matching

� Correctness continued:
� If G has a perfect 3-dimensional matching then:

� Each blue node in the cycle for each xi is 
contained in exactly two triangles, exactly one 
of which much be in M.   If one triangle in the 
cycle is in M, the others must be the same 
color.    We use the color not used to define the 
truth assignment to xi

� The two nodes for any clause must be 
contained in an edge which must also contain a 
third node that corresponds to a literal made 
true by the truth assignment.  Therefore the 
truth assignment satisfies F so it is satisfiable. 


