
CSE 431 – Theory of Computation 

Lecture 9 – Tues, Apr 29 

Lecturer: James Lee 

Scribed by: Devin Field 

 

Complexity Theory 

 
Before now, we have simply looked at if a Turing Machine can exist to solve a problem without 

any regard to the time involved in doing so. We are now going to look at the resource 

consumption of TMs, specifically, the time it takes to solve a problem. 

 

Example: 

                
 A is a decidable language of a series of 0’s followed by the same number of 1’s 

 M =   “1: Make sure the input looks like      

  2: Iteratively cross off first a ‘0’ and then a ‘1’ 

  3: Finally check that the tape is ‘XXXX…XXX_’ ” 

   Note: _ is the symbol used to indicate a blank spot on the tape 

 

 How long does this take to run? 

  If it has n-bits, it intuitively runs in       steps 

 

Definition: The time complexity of the TM M is a function        where      is the max 

number of steps M takes on input of size n. 

 

Definition:     (    )   L   L can be decided by a TM with time complexity  (    )  

Ex:            

 

Big O-Notation 

 
            
      (    ) if there are         such that             for        
  

Example:                         
 

Order of magnitude:                         

We don’t have to worry about base of the logs because                         

           means                 for      

 

Definition:       (    )          
    

    
   

  



Can we find a faster algorithm for A than      ? 

 Divide the number of zeroes and ones by two each step and then check the parity 

  Ex: 0 0 0 0 0 1 1 1 1 1 

         X0X0XX1X1X 

         XXX0XXXX1X 

               XXXXXXXXXX 

 Step 1: Check input       

 Step 2: Loop over the input until it is all X’s             

  Step 2.a: Loop across the input, cross out every other 1 and 0       

 Step 3: Check if all X’s       

 

 The time complexity of this machine is                              
 This means that                  

 

But what if we had a two tape TM? 

 Then we can solve it in      time! 

  First, verify that the input is all 0’s followed by all 1’s 

  Iterate from left to right on the input: 

If it is a 0, move the lower tape to the right 

If it is a 1, move the lower tape to the left 

  If you try to move off the left side of the tape, Reject 

  If you aren’t in the first spot after the entire input, Reject 

  Else, Accept 

 

This leads to the “Extended Church-Turing Thesis”: “All reasonable computation models can 

simulate each other with only polynomial slow down.” 

 

Theorem: If       , then every multi-tape TM with runtime t(n) can be simulated by a single-

tape TM in time          
 

Proof (Sketch):  
 Recall how we simulate a multi-tape TM on a single-tape TM 

  Single-tape: INPUT#TAPE 1#Tape 2#......#Tape n 

 In order to calculate a single step of a multi-tape: 

  1 pass to read all heads 

  1 pass to move all the tape heads 

 This means that a single tape TM can simulate a single step of a multi-tape TM in      

where L is the current length of the tape 

           

 Therefore, there are going to be  (    ) steps all taking a maximum of  (    ) time 

  (    )   (    )             

 

The “Extended Church-Turing Thesis” is largely believed to be false now because of Quantum 

Computers 

 Quantum Computers can factor a polynomial in       

 Regular computers take        
  



P vs NP 
  

P is all the problems that can be solved in polynomial time 

   ⋃              All the algorithms that are “efficient” 

 

Non-deterministic Computation: 

 In non-det computation, the TM can execute multiple choices at the same time. At each 

choice, it “splits” into multiple executions, allowing for all options to be explored quickly. The 

TM accepts the input if any of the paths accept. 

 

Definition: A Hamiltonian Path is a path that visits each node in a graph exactly one. 

 

                     is a graph that has a directed Hamiltonian path from      
 This is an efficient problem to solve using a non-det computer 

 

Definition: A non-det TM is a decider if it halts on every computation path. 

 

Definition: The non-det time complexity of N is      , where      is the max height of the 

computation tree on any input of size n. 

 

Definition:      (    )       can be decided by a non-det TM with complexity  (    )  
 

                          
 

Where does the         come from? 

The max number of states that can be jumped to from a single node at each point is a constant. 

 We call this constant b 

If I want to jump to n different states, it actually takes        steps 

 

Definition:     ⋃               
 

“Stupid” Theorem:      (    )      (  (    )) 

 A non-det. computer can be simulated on a reg. computer 

  It can simply encode every path and then try them in order 

  One path takes         on a 3 tape machine  

   Tape 1: The input 

   Tape 2: The current path to take 

   Tape 3: The work tape 

  The max number of paths possible is       

   (          )    (    )  

 Therefore a single tape TM =   (    )
 

   (    ) 


