
CSE 431 – Theory of Computation

Lecture 9 – Tues, Apr 29

Lecturer: James Lee

Scribed by: Devin Field

Complexity Theory

Before now, we have simply looked at if a Turing Machine can exist to solve a problem without

any regard to the time involved in doing so. We are now going to look at the resource

consumption of TMs, specifically, the time it takes to solve a problem.

Example:

 A is a decidable language of a series of 0’s followed by the same number of 1’s

 M = “1: Make sure the input looks like

 2: Iteratively cross off first a ‘0’ and then a ‘1’

 3: Finally check that the tape is ‘XXXX…XXX_’ ”

 Note: _ is the symbol used to indicate a blank spot on the tape

 How long does this take to run?

 If it has n-bits, it intuitively runs in steps

Definition: The time complexity of the TM M is a function where is the max

number of steps M takes on input of size n.

Definition: () L L can be decided by a TM with time complexity ()

Ex:

Big O-Notation

 () if there are such that for

Example:

Order of magnitude:

We don’t have to worry about base of the logs because

 means for

Definition: ()

Can we find a faster algorithm for A than ?

 Divide the number of zeroes and ones by two each step and then check the parity

 Ex: 0 0 0 0 0 1 1 1 1 1

 X0X0XX1X1X

 XXX0XXXX1X

 XXXXXXXXXX

 Step 1: Check input

 Step 2: Loop over the input until it is all X’s

 Step 2.a: Loop across the input, cross out every other 1 and 0

 Step 3: Check if all X’s

 The time complexity of this machine is
 This means that

But what if we had a two tape TM?

 Then we can solve it in time!

 First, verify that the input is all 0’s followed by all 1’s

 Iterate from left to right on the input:

If it is a 0, move the lower tape to the right

If it is a 1, move the lower tape to the left

 If you try to move off the left side of the tape, Reject

 If you aren’t in the first spot after the entire input, Reject

 Else, Accept

This leads to the “Extended Church-Turing Thesis”: “All reasonable computation models can

simulate each other with only polynomial slow down.”

Theorem: If , then every multi-tape TM with runtime t(n) can be simulated by a single-

tape TM in time

Proof (Sketch):
 Recall how we simulate a multi-tape TM on a single-tape TM

 Single-tape: INPUT#TAPE 1#Tape 2#......#Tape n

 In order to calculate a single step of a multi-tape:

 1 pass to read all heads

 1 pass to move all the tape heads

 This means that a single tape TM can simulate a single step of a multi-tape TM in

where L is the current length of the tape

 Therefore, there are going to be () steps all taking a maximum of () time

 () ()

The “Extended Church-Turing Thesis” is largely believed to be false now because of Quantum

Computers

 Quantum Computers can factor a polynomial in

 Regular computers take

P vs NP

P is all the problems that can be solved in polynomial time

 ⋃ All the algorithms that are “efficient”

Non-deterministic Computation:

 In non-det computation, the TM can execute multiple choices at the same time. At each

choice, it “splits” into multiple executions, allowing for all options to be explored quickly. The

TM accepts the input if any of the paths accept.

Definition: A Hamiltonian Path is a path that visits each node in a graph exactly one.

 is a graph that has a directed Hamiltonian path from
 This is an efficient problem to solve using a non-det computer

Definition: A non-det TM is a decider if it halts on every computation path.

Definition: The non-det time complexity of N is , where is the max height of the

computation tree on any input of size n.

Definition: () can be decided by a non-det TM with complexity ()

Where does the come from?

The max number of states that can be jumped to from a single node at each point is a constant.

 We call this constant b

If I want to jump to n different states, it actually takes steps

Definition: ⋃

“Stupid” Theorem: () (())

 A non-det. computer can be simulated on a reg. computer

 It can simply encode every path and then try them in order

 One path takes on a 3 tape machine

 Tape 1: The input

 Tape 2: The current path to take

 Tape 3: The work tape

 The max number of paths possible is

 () ()

 Therefore a single tape TM = ()

 ()

