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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

An interesting question about Turing machines is whether they can reproduce themselves. A Turing machine
cannot be be defined in terms of itself, but can it still somehow print its own source code? The answer to
this question is yes, as we will see in the recursion theorem. Afterward we will see some applications of this
result.

7.1 Recursion Theorem

Our end goal is to have a Turing machine that prints its own source code and operates on it. Last lecture
we proved the existence of a Turing machine called SELF that ignores its input and prints its source code.
We construct a similar proof for the recursion theorem. We will also need the following lemma proved last
lecture.

Lemma 7.1 There exists a computable function q : Σ∗ → Σ∗ such that q(w) = 〈Pw〉, where Pw is a Turing
machine that prints w and hats.

Theorem 7.2 (Recursion theorem) Let T be a Turing machine that computes a function t : Σ∗ ×Σ∗ →
Σ∗. There exists a Turing machine R that computes a function r : Σ∗ → Σ∗, where for every w,

r(w) = t(〈R〉, w).

The theorem says that for an arbitrary computable function t, there is a Turing machine R that computes
t on 〈R〉 and some input.

Proof: We construct a Turing Machine R in three parts, A, B, and T , where T is given by the statement
of the theorem.

Figure 7.1: Schematic of R

Let w be the original input to R. Here A is the Turing machine P〈BT#w〉, where # is a special character to
separate the original input. Now A exists because of the lemma. After A runs, the tape contains 〈BT 〉#w.

Next B is a Turing machine that constructs the string q(x) given input x, where q is from the lemma. Then
it prints 〈q(x), x〉 and halts. When B runs after A, it constructs the string 〈P〈BT#w〉〉 = 〈A〉. It prints
〈〈A〉, 〈BT 〉#w〉 = 〈ABT#w〉 = 〈R#w〉.

Finally T runs on its input, which is 〈R#w〉 here. This completes the proof.
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7.2 Applications

Recall that ATM = {〈M,w〉 : M is a Turing machine that accepts w} is undecidable. We proved this before
using Cantor diagonalization. The recursion theorem allows a simpler proof.

Theorem 7.3 ATM is undecidable.

Proof: We prove the theorem by contradiction. Assume Turing machine A decides ATM . Construct the
following machine T .

T = “On input w:

1. Obtain 〈T 〉 using the recursion theorem.

2. Simulate A on input 〈T,w〉.

3. Accept if A rejects and reject if A accepts.”

Running T on input w does the opposite of what A declares it does. Therefore, A cannot be deciding ATM .

A second application is to show that the following language is not recognizable. If M is a Turing machine, say
that M is minimal if 〈M〉 is the shortest code with M ’s functionality. Let MINTM = {〈M〉 : M is minimal}.

Theorem 7.4 MINTM is not recognizable.

Proof: We prove the theorem by contradiction. Assume the language is recognizable. Then there exists an
enumerator E for the language. Construct the following Turing machine T .

T = “On input w:

1. Obtain 〈T 〉 using the recursion theorem.

2. Simulate E until it prints 〈D〉 such that ‖〈D〉‖ > ‖〈T 〉‖.

3. Simulate D on w and output the same result as it.”

Now Step 2 will always complete because the alphabet is finite and there are infinitely many Turing machines
printed, so there is no maximum length of the machines printed. Then D is not minimal because T has the
same functionality with shorter code.

7.3 Logic and Incompleteness

This section is completely unrelated to the previous sections. A logical statement is one that uses quantifiers
(∀,∃) and makes a claim about variables. Here are some examples.

Example 7.5 (infinitely many primes) ∀q ∃p ∀x, y (p > q ∧ x, y > 1) =⇒ xy 6= p

Example 7.6 (twin primes conjecture) ∀q ∃p ∀x, y (p > q ∧ x, y > 1) =⇒ xy 6= p ∧ xy 6= p + 2
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Example 7.7 (Fermat’s last theorem) ∀a, b, c, n ∈ Z (a, b, c > 0 ∧ n > 2) =⇒ an + bn 6= cn

We define the famous incompleteness theorem, which says something interesting about logical statements.

Theorem 7.8 (Godel’s incompleteness theorem) In any logical system with addition and multiplica-
tion, the system is either inconsistent, meaning it proves untrue statements, or incomplete, meaning some
statements are unprovable.


