
CSE 431: Introduction to Computational Theory 
Lecture 6 - 4/17/14 
Reduction Proofs and the Recursion Theorem 
 
 
Reduction Proofs 
 
We have already seen that the following language is undecidable: 
 

    {                              } 
 

Now we will use this fact in a new method of proving undecidability in TMs, known 
as reduction. 

 
Example 1:  
Given the language, 
 

       {                               }, 
 

can we prove that it is undecidable? 
 
Idea: We will assume that        is decidable then prove that     is decidable 
(since we know it is not, this provides the contradiction needed for the proof). This 
is the method of proof by reduction. 
 
Proof: Assume that N is a TM that decides the language        as defined above. 
 
Claim: B is a TM that decides      
 
B = “On input <M, w>: 

1. Simulate N on <M, w> 
2. If N rejects, REJECT 
3. Simulate M on w 
4. If M accepts w, ACCEPT 
5. If M rejects w, REJECT” 

 
Here we have given a TM that decides the language     , which is guaranteed to halt 
on all input and hence also deciding the        language. But we already proved 
that     is undecidable, so we have arrived at a contradiction and our assumption 
that N decides the        language is falsified, making        undecidable. 
 
We will also see that TMs can create other TMs, as shown in the next example. 
 
Example 2: 



Given the language, 
 

    {                   ( )    } 
 
show that it is undecidable. 

 
Proof: Assume Q is a TM that decides     
 
Claim: B is a TM that decides      
 
B = “On input <M, w>: 

1. R = “If the input x   w, REJECT 
       “If x = w, simulate M on w using the behavior of M” 

2. Run Q on <R> 
3. If Q accepts <R>, REJECT 
4. If Q rejects <R>, ACCEPT” 

 
Notes: 

 R accepts w iff M accepts w 
 If M accepts w,  ( )  { } 
 If M does not accept w,  ( )     

 
As in the previous example, we have given a TM that decides the language     and 
so the TM Q will decide the language    . Having already proved the undecidability 
of    , the TM B cannot exist and we have arrived at a contradiction. The language 
    is then undecidable. 
 
Example 3: 
 
Given the language, 
 

     {                       ( )    ( )} 
 
show that it is undecidable. 
 
Proof: Assume A is a TM that decides      
 
Claim: B is a TM that decides      
 
B = “On input <M>: 

1. R = “On input x, REJECT” 
2. Run A  on <M,R> 
3. If A accepts, ACCEPT 
4. If A rejects, REJECT” 

 



Note that for step 2 here, we are deciding if  ( )   ( )    . 
 
 
 
 
Other Problems of Undecidability 
 
TM languages are not the only problems that can be undecidable! Consider the 
following example: 
 
Given the polynomial equation                  , is there some solution 
where          ? If we were talking about real numbers, then we could certainly 
find the root or at least get close enough to the root to confidently say it is the 
answer, but there is no way to decide if there is an integer answer! 
 

The Recursion Theorem 
 
Consider the TM M which behaves as follows: 
 
M = “……… 

1. ……… 
2. ……… 
3. Obtain a copy of <M>  
4. Print on the tape” 

 
What does this mean? Ignoring whatever the rest of the TM does, in step 3 we obtain 
a copy of <M>, meaning we want to get a copy of the source code of M. Then on the 
input, we want to write that source code. 
 
Problem: Design a TM SELF that when executed, prints <SELF> (its own source 
code). 
 
We must be careful not to fall into an infinite loop of recursion; our initial naïve 
approach might be to add a print to the top of the code…but then this is changing the 
source code so we would have to add another print to the top, and so on forever! 
 
Definition: A function           is computable if there is a TM M that on every 
input      , it halts with  ( ) written on the tap 
 
Lemma: There is a computable function q such that for every input      , 
 ( )         where    is a TM that prints w. 
 
Define a TM Q as follows: 
 
Q = “On input w: 



1.    = “Erase the input 
           Write w on the tape 
           HALT” 

2. Erase the input 
3. Write      on the tape 

 
Define <SELF> = <AB>: A is a TM that outputs <B>, and B outputs <A> 
 
Giving the code for A is easy, it is simply A =     ! But the code for B becomes a bit 
more complicated; we cannot refer to A in the code since A already refers to B.  
 
B = “On input <M>: 

1. Compute q(<M>) 
2. Erase the input 
3. Print <    , M> 
4. HALT” 

 
Notes: 

 q(<M>) is a program that prints <M> 
 At no point does B refer to A; this prevents the infinite recursion loop and 

allows us define SELF  
 
The definition of A and B together make up the code of SELF , and when SELF is run, 
it will print its own source code using what A and B do together. 
 
  
 
 
 

 
 


