
CSE 431: Introduction to Computational Theory
Lecture 6 - 4/17/14
Reduction Proofs and the Recursion Theorem

Reduction Proofs

We have already seen that the following language is undecidable:

 { }

Now we will use this fact in a new method of proving undecidability in TMs, known
as reduction.

Example 1:
Given the language,

 { },

can we prove that it is undecidable?

Idea: We will assume that is decidable then prove that is decidable
(since we know it is not, this provides the contradiction needed for the proof). This
is the method of proof by reduction.

Proof: Assume that N is a TM that decides the language as defined above.

Claim: B is a TM that decides

B = “On input <M, w>:

1. Simulate N on <M, w>
2. If N rejects, REJECT
3. Simulate M on w
4. If M accepts w, ACCEPT
5. If M rejects w, REJECT”

Here we have given a TM that decides the language , which is guaranteed to halt
on all input and hence also deciding the language. But we already proved
that is undecidable, so we have arrived at a contradiction and our assumption
that N decides the language is falsified, making undecidable.

We will also see that TMs can create other TMs, as shown in the next example.

Example 2:

Given the language,

 { () }

show that it is undecidable.

Proof: Assume Q is a TM that decides

Claim: B is a TM that decides

B = “On input <M, w>:

1. R = “If the input x w, REJECT
 “If x = w, simulate M on w using the behavior of M”

2. Run Q on <R>
3. If Q accepts <R>, REJECT
4. If Q rejects <R>, ACCEPT”

Notes:

 R accepts w iff M accepts w
 If M accepts w, () { }
 If M does not accept w, ()

As in the previous example, we have given a TM that decides the language and
so the TM Q will decide the language . Having already proved the undecidability
of , the TM B cannot exist and we have arrived at a contradiction. The language
 is then undecidable.

Example 3:

Given the language,

 { () ()}

show that it is undecidable.

Proof: Assume A is a TM that decides

Claim: B is a TM that decides

B = “On input <M>:

1. R = “On input x, REJECT”
2. Run A on <M,R>
3. If A accepts, ACCEPT
4. If A rejects, REJECT”

Note that for step 2 here, we are deciding if () () .

Other Problems of Undecidability

TM languages are not the only problems that can be undecidable! Consider the
following example:

Given the polynomial equation , is there some solution
where ? If we were talking about real numbers, then we could certainly
find the root or at least get close enough to the root to confidently say it is the
answer, but there is no way to decide if there is an integer answer!

The Recursion Theorem

Consider the TM M which behaves as follows:

M = “………

1. ………
2. ………
3. Obtain a copy of <M>
4. Print on the tape”

What does this mean? Ignoring whatever the rest of the TM does, in step 3 we obtain
a copy of <M>, meaning we want to get a copy of the source code of M. Then on the
input, we want to write that source code.

Problem: Design a TM SELF that when executed, prints <SELF> (its own source
code).

We must be careful not to fall into an infinite loop of recursion; our initial naïve
approach might be to add a print to the top of the code…but then this is changing the
source code so we would have to add another print to the top, and so on forever!

Definition: A function is computable if there is a TM M that on every
input , it halts with () written on the tap

Lemma: There is a computable function q such that for every input ,
 () where is a TM that prints w.

Define a TM Q as follows:

Q = “On input w:

1. = “Erase the input
 Write w on the tape
 HALT”

2. Erase the input
3. Write on the tape

Define <SELF> = <AB>: A is a TM that outputs , and B outputs <A>

Giving the code for A is easy, it is simply A = ! But the code for B becomes a bit
more complicated; we cannot refer to A in the code since A already refers to B.

B = “On input <M>:

1. Compute q(<M>)
2. Erase the input
3. Print < , M>
4. HALT”

Notes:

 q(<M>) is a program that prints <M>
 At no point does B refer to A; this prevents the infinite recursion loop and

allows us define SELF

The definition of A and B together make up the code of SELF , and when SELF is run,
it will print its own source code using what A and B do together.

