
CSE 431 Theory of Computation Spring 2014

Lecture 6: April 17
Lecturer: James R. Lee Scribe: Patrick Larson

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

6.1 Overview

• Today: Reduction and Recursion Theorem

• Tuesday: Proof Systems, Logic, Godel’s Incompleteness Theorems

• Thursday: Complexity Theory.

6.2 Reductions

Last time we use the diagonalization argument to show that

ATM = {〈M,w〉 : M a Turing Machine accepting w}

is undecidable. Using reduction, we can use this fact to show other problems are undecidable. The idea is to
take a problem that we think is undecidable, assume we have a decider for it, and use that decider to decide
ATM , a contradiction.

Example 1:
HALTTM = {〈M,w〉 : M a Turing Machine that halts on w}

is undecidable.

Proof: Assume for contradiction that N is a Turing Machine that decides HALTTM . Define another Turing
Machine

B = “ 1. On input 〈M,w〉, simulate N on 〈M,w〉.
2. If N rejects, REJECT.
3. Otherwise, simulate M on w.
4. If M accepts w, ACCEPT.
5. If M rejects w, REJECT. ”

Claim 6.1 (Example 1) B decides ATM

If M accepts w, then N halts, so B simulates M on w and will accept. If M rejects w, either it does not
halt, and is rejected by N , or it does halt and is rejected by M . Then, L(B) = ATM and B halts on any
input not in L(B). Thus, B is a decider for ATM .

This is a contradiction since ATM is known to be undecidable. Thus, HALTTM is likewise undecidable.

6-1



6-2 Lecture 6: April 17

Example 2:
ETM = {〈M〉 : M a Turing machine such that L(M) = ∅}

is undecidable.

Proof: We reduce to ATM . Assume for contradiction that Q is a Turing Machine that decides ETM . Define
another Turing Machine

B = “ 1. On input 〈M,w〉, define R
R = “ 1.1 If input x 6= w, REJECT

1.2 If input x = w, simulate M on w and return the result. ”
2. Simulate Q on 〈R〉
3. If Q accepts 〈R〉, REJECT.
4. If Q rejects 〈R〉, ACCEPT. ”

Claim 6.2 (Example 2) B decides ATM

Suppose M accepts w. Then R will accept w. When we simulate Q on 〈R〉, L(R) is non-empty and so Q
will reject, and thus B will accept.
If instead M rejects w, R will also reject w. R also rejects all other input, so L(R) is empty, and Q will
accept. Then B will reject.
Since B halts on all input and L(B) = ATM , B is a decider for ATM , a contradiction.

Thus, ETM is undecidable.

Example 3:

EQTM = {〈M,N〉 : M a Turing Machine, N a Turing machine and L(M) = L(N)}

is undecidable.

Proof: We reduce to ETM . Assume for contradiction that A is a Turing Machine that decides EQTM .
Define another Turing Machine

B = “ 1. On input 〈M〉, define R
R = “ 1.1 On input x, REJECT ”

2. Simulate A on 〈M,R〉
3. If A accepts, ACCEPT.
4. If A rejects, REJECT. ”

Claim 6.3 (Example 3) B decides ETM

First note that L(R) is empty. Then, suppose L(M) is empty. Then, L(M) = L(R) = ∅ and A accepts.
Suppose L(M) is not empty. Then, L(M) 6= L(R) = ∅ and A rejects. So L(B) = ETM and B halts on all
input. Thus, B is a decider for ETM , a contradiction.

Thus, EQTM is undecidable.



Lecture 6: April 17 6-3

Aside Are there undecidable problems not involving Turing Machines?

Hilbert’s Tenth Problem: Given an integer polynomial of more than one variable, there is no decider for the
existence of an integer solution.

Post Correspondence Problem: Given a set of dominoes, there does not exist a decider for the existence of
an ordering of arbitrarily many instances from that set in which the top line of the dominoes is equal to the
bottom line.

6.3 The Recursion Theorem

Suppose that within a Turing Machine M , we want a step which obtains a copy of its own source code. This
is non-trivial since obtaining the source code modifies the source code.

We can instead solve a simple problem. We design a Turing Machine SELF which when executed prints
〈SELF 〉. The existence of such a machine is also non-trivial:

printf("printf(\"...

We begin with a definition.

Definition 6.4 A function q : Σ∗ → Σ∗ is computable if there is a Turing Machine M that on every input
w ∈ Σ∗, M halts with q(w) written on the tape.

Lemma 6.5 There exists a computable function q so that for every input w ∈ Σ∗, q(w) = 〈Pw〉, where Pw

is a Turing machine that prints w.

Proof: by construction.

Q = “ 1. On input w, design Pw as follows
Pw = “ 1.1 erase the input.

1.2 write w on the tape.
1.3 halt. ”

2. erase the input.
3. write 〈Pw〉 on the tape ”

Then, let 〈SELF 〉 = 〈AB〉. That is, SELF is a machine that first executes A, then executes B, where A
and B are defined as follows:

A = P〈B〉
B = “ 1. On input 〈M〉, compute q(〈M〉)

2. Print q(〈M〉)〈M〉
3. HALT. ”

Notice then that A prints the source code to B, which then prints the source code that prints B followed by
the source code for B. So, SELF prints 〈SELF 〉.


