CSE 431 - Theory of Computation
Lecture 5: April 15

Lecturer: James Lee

Scribed by: Jake Utley and Sam Courts

Recap

* A Turing machine is a simple robust model of computation. Robust meaning
that reasonable modifications to the model do not increase the
computational power.

* TMs express algorithms, so we don't need to focus on the underlying
machine.

* Church-Turing thesis: Any reasonable model of computation is equivalent to
the Turing machine model

o Reasonable means a finite amount of work per step
* TMs can take the description of other TMs as input
o <M> is the description of a TM M
o Once we have the description of a TM as a string, we can pass that
description as input to other TMs

Undecidable Languages

There are languages that are undecidable, meaning that there are languages that no
Turing machine can decide. This can be seen by counting both the total number of
languages and the total number of TMs.

Fix £ = {0,1}
Recall that a language L is a subset L & X*

How many languages are there? 2%
- " is countable
- 2% is uncountable

How many Turing machines are there?
- Countably many. Any TM can be encoded into a string, so the set of all TMs is a
subset of X*. This means there are countably many TMs.

By the counting argument, we can see that the vast majority of languages are
undecidable.



Example
Ary ={<M,w >: Misavalid TM,and w is an input, M accepts w}
Fact: Ay, is Turing recognizable
R(<M,w>) =" 1. Check that <M> is a valid TM description
2.Simulate M on w
3.1f M accepts w, ACCEPT
4.1f M rejects w, REJECT"
R recognizes A1y, but does not decide since the simulation may loop forever.
Theorem: A, is Turing-undecidable

Intuition:

The set of all TMs is countable, so we can list them M;, M,, M5, .... We can run M; on
<M;>. This seems strange, but is a valid thing to do and might sometimes do
reasonable things. Running all TMs on the description of all TMs, we get the
following table:

=
ez S

A: accept, N: doesn't accept

We create a TM S such that on input <M;>, S does the opposite of M; on <M;> (flips
the diagonal). Because S is a TM, it must be in the table. So what would S show in the
diagonal?

S(<S>) resultsin A = S(<S>) resultsin N
S(<S>) resultsin N = §(<§>) resultsin A

Clearly, this assumption results in a contradiction, so S cannot be a TM. We will
prove that if Ay, is decidable, we could build an implementation of S.

Proof: Suppose (for the sake of contradiction) that A7y, is decidable.

D(<M>) =" 1. Check that <M> is a valid TM description, if not then REJECT
2. Use the decider for Ay, to decide whether M accepts <M>
3.1f M accepts <M >, REJECT
4. 1f M rejects <M>, ACCEPT"



Run D (<D>), this results in a contradiction:
D(<D>) accepts = D(<D>) rejects
D(<D>) rejects = D(<D>) accepts

This implies that D cannot exist, so our assumption was false, and Ay, must be
undecidable.

Unrecognizable Languages

Definition: A language L is co-Turing-recognizable if L = {x € 2* : x & L} is Turing-
recognizable.

Lemma: A language L is decidable iff it's both recognizable and co-recognizable.

Proof:
1) L isdecidable = L is recognizable and co-recognizable
Using the decider for L, we can recognize L.
Negating the decider for L, we can recognize L.
Therefore, L is both recognizable and co-recognizable.

2) L isrecognizable and co-recognizable = L is decidable
Let M recognize L and N recognize L
We can define our decider R as:
R =" On input w, simulate:
M on w and
N on w in parallel
If M accepts w, ACCEPT
If N accepts w, REJECT"
Ifw € L, then M accepts w = R accepts w.
Ifw & L, then N accepts w = R rejects w.

Theorem: A, is not Turing-recognizable.

Proof:
1) Arp is not decidable.
2) Ary is recognizable.
3) From 1 and 2, Ay, is not recognizable.
4) Ary is not recognizable.



