
CSE 431 Theory of Computation Spring 2014

Lecture 4: April 10
Lecturer: Paul Beame Scribe: Shao-Chieh Cheng, Siwakorn Srisakaokul

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

4.1 Decidability

In this lecture, we continue to describe Turing machines at a high-level.

We can encode arbitrary objects such as polynomials, graphs, and automata as strings. This allows us to
define languauges in terms of these objects. One can then argue about the decidability and recognizability
of these languages. We give some examples below.

Theorem 4.1 For an input string w, The language

ADFA = {〈B,w〉 : B is a DFA that accepts w}

is decidable.

Proof: On input 〈B,w〉,

1. Check if the input 〈B,w〉 is well-formed.

2. Simulate the execution of B on w.

3. If the simulation ends in an accept state, accept; Otherwise, reject.

Theorem 4.2 For an input string w, The language

ANFA = {〈B,w〉 : B is a NFA that accepts w}

is decidable.

Proof: On input 〈B,w〉,

1. Check if the input 〈B,w〉 is well-formed.

2. Apply the NFA → DFA convertor to build 〈B′, w〉 where B′ is an equivalent DFA to B.

3. Run TM M from Theorem 4.1 on the input 〈B′, w〉.

4. If M accepts, accept; Otherwise, reject.

4-1



4-2 Lecture 4: April 10

Theorem 4.3 For an input string w, The language

AREX = {〈R,w〉 : R is a regular expression that generates w}

is decidable.

Proof: On input 〈R,w〉,

1. Check if the input 〈R,w〉 is well-formed.

2. Convert the regular expression R to an equivalent DFA B.

3. Run TM M from Theorem 4.1 on the input 〈B,w〉.

4. If M accepts, accept; Otherwise, reject.

Theorem 4.4 For a DFA B, let L(B) denote the language of B. The language

EDFA = {〈B〉 : B is a DFA and L(B) = ∅}

is decidable.

Proof: The Turing machine E described below decides EDFA.

1. Check if input 〈B〉 is of the right form.

2. Graph-search (DFS or BFS) on the graph of B to see if any of the final states of B is reachable from
its start state. If yes, reject 〈B〉. If not, accept 〈B〉.

Theorem 4.5 EQDFA = {〈M1,M2〉 : M1,M2 are DFAs and L(M1) = L(M2)} is decidable.

Proof: The Turing machine described below decides EQDFA.

1. Check if input 〈M1,M2〉 is of the right form.

2. Using the notation for DFAs given in Sipser, let M1 = (Q1,Σ, δ1, p0, F1), and M2 = (Q2,Σ, δ2, q0, F2).
Create a new DFA M = (Q,Σ, δ, (p0, q0), F ) such that:

• Q = Q1 ×Q2 (i.e. the states of M is the Cartesian product of M1 and M2).

• The transition function δ′ : Q× Σ→ Q of M is defined by δ′((p, q), a) = (δ1(p, a), δ2(q, a))

• The final states F = {(p, q) : (p ∈ F1 ∧ q /∈ F2) or (p /∈ F1 ∧ q ∈ F2)}

It can be verified that L(M) = L(M1)∆L(M2), where ∆ denotes the set symmetric difference operator.
Note that L(M1) = L(M2) iff L(M) = ∅.

3. Feed 〈M〉 into the TM E for Theorem 4.4 . Accept 〈M1,M2〉 iff E accepts 〈M〉.



Lecture 4: April 10 4-3

Theorem 4.6 ATM = {〈M,w〉 : M is a TM that accepts w} is recognizable but not decidable. ATM is
called the Halting problem.

Proof: The Turing machine U described below recognizes ATM .

1. Check if input 〈M,w〉 is of the right form.

2. Simulate M on input w step by step. Accept 〈M,w〉 iff M accepts w.

U is called a universal Turing machine.

We’ll prove that ATM is not decidable in the next couple of lectures.

As a final remark, note that there are only countably many Turing machines, but uncountably many lan-
guages over a (nonempty) alphabet Σ. Therefore, there exist languages that are not even Turing-recognizable.


